
THE E XPER T ’S VOICE® IN OR ACLE

Pro Oracle SQL
Development

Best Practices for Writing
Advanced Queries
—
Jon Heller

www.allitebooks.com

http://www.allitebooks.org

Pro Oracle SQL
Development

Best Practices for Writing
Advanced Queries

Jon Heller

www.allitebooks.com

http://www.allitebooks.org

Pro Oracle SQL Development: Best Practices for Writing Advanced Queries

ISBN-13 (pbk): 978-1-4842-4516-3 ISBN-13 (electronic): 978-1-4842-4517-0
https://doi.org/10.1007/978-1-4842-4517-0

Copyright © 2019 by Jon Heller

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Jonathan Gennick
Development Editor: Laura Berendson
Coordinating Editor: Jill Balzano

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484245163. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Jon Heller
Clive, IA, USA

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-4517-0
http://www.allitebooks.org

I dedicate this book to my wonderful wife, Lisa,
and to my awesome children, Elliott and Oliver.

www.allitebooks.com

http://www.allitebooks.org

v

Table of Contents

Part I: Learn How to Learn �� 1

Chapter 1: Understand Relational Databases ��� 3

History of Relational Databases �� 3

Relational Model and Why It Matters �� 6

History ��� 6

Terminology ��� 7

Simplicity ��� 7

Sets and Tables ��� 8

Problems Implementing a Relational Model �� 8

Relational Model and Why It Doesn’t Matter ��� 9

The NULL Problem Isn’t a Problem �� 9

Column Order Matters ��� 11

Denormalization �� 11

All Rows Are Distinct ��� 12

SQL Programming Language �� 12

History and Terminology �� 12

SQL Alternatives �� 13

Is SQL a Programming Language? �� 16

About the Author ��xxiii

About the Technical Reviewer ���xxv

Acknowledgments ���xxvii

Introduction ��xxix

www.allitebooks.com

http://www.allitebooks.org

vi

Different Database Types �� 17

Alternative Database Models ��� 17

Different Oracle Databases (OLTP vs� DW) ��� 18

Key Concepts �� 19

NULL �� 20

JOIN ��� 22

Summary��� 28

Chapter 2: Create an Efficient Database Development Process ����������������������������� 29

Shared Database vs� Private Database ��� 29

Create an Infinite Number of Databases ��� 30

Advantages of Private Databases �� 31

How to Implement Private Databases ��� 34

Rapidly Drop and Recreate Schemas �� 36

Why Deploy Often? �� 36

How to Deploy Often? �� 37

SQL*Plus Installation Scripts ��� 38

SQL*Plus Patch Scripts �� 40

Control and Integrate Schemas with Version- Controlled Text Files �� 42

Single Source of Truth ��� 42

Load Objects from the Repository and File System ��� 43

Create and Save Changes Manually �� 44

Empower Everyone ��� 46

Power Imbalance Between Developers and Administrators �� 47

Improve Communication�� 48

Transparency ��� 49

Lower Barriers to Entry ��� 49

Summary��� 50

Chapter 3: Increase Confidence and Knowledge with Testing �������������������������������� 51

Build Confidence with Automated Tests �� 51

Fix Bugs Faster �� 51

Table of ConTenTs

vii

Gain Confidence, Avoid Biases ��� 52

Test-Driven Development �� 53

Create Useful Test Data ��� 53

Create Large Test Data �� 55

Remove Test Data �� 56

How to Build Automated Tests ��� 56

Build Knowledge with Minimal, Complete, and Verifiable Examples ��� 59

Why Spend So Much Time Building Reproducible Test Cases? ��� 59

Minimal �� 60

Complete ��� 61

Verifiable ��� 62

Sharing Tests ��� 64

Avoiding the XY Problem ��� 65

Oracle Performance Testing �� 65

Oracle Detective Kit �� 67

Data Dictionary Views �� 67

Dynamic Performance Views ��� 69

Relational Tools for Inspecting Databases ��� 72

Non-relational Tools for Inspecting Databases �� 74

Summary��� 75

Chapter 4: Find Reliable Sources �� 77

Places to Go �� 78

The Problems with Forums �� 78

The Problems with Static Websites ��� 79

Read the Manual ��� 79

The Manual Is Not Perfect ��� 82

My Oracle Support ��� 83

People to See �� 84

Summary��� 85

Table of ConTenTs

viii

Chapter 5: Master the Entire Stack �� 87

Not Just Faster �� 87

Typing �� 89

Operating Systems and Supporting Programs �� 89

Operating Systems �� 90

Text Editors �� 90

Comparison Tools �� 91

Reporting Tools and Excel ��� 92

SQL and PL/SQL �� 93

SQL*Plus ��� 94

When We Should Use SQL*Plus ��� 94

When We Should Not Use SQL*Plus��� 95

Integrated Development Environment �� 96

Learn an IDE �� 97

When Not to Use an IDE Feature �� 98

Oracle IDE Comparison �� 98

Worksheets, Notebooks, Snippets, Scripts, and Gists ��� 99

Get Organized �� 99

Worksheets �� 100

Summary��� 103

Part II: Write Powerful SQL with Sets and Advanced Features ������������������� 105

Chapter 6: Build Sets with Inline Views and ANSI Join Syntax ���������������������������� 107

Spaghetti Code from Nonstandard Syntax �� 107

Hard to Read Old Syntax �� 108

Hard to Debug Old Syntax�� 109

Accidental Cross Joins in Old Syntax �� 110

Nonstandard but Still Useful �� 111

Too Much Context�� 112

The Importance of Limiting Context �� 112

Table of ConTenTs

ix

Avoid Correlated Subqueries ��� 113

Avoid Common Table Expressions ��� 114

Sets, Chunking, and Functional Programming to the Rescue ��� 115

Sets ��� 115

Chunking ��� 116

Functional Programming ��� 118

Inline Views ��� 119

What Is an Inline View? ��� 119

Inline Views Make Code Bigger but Simpler �� 120

Simple Inline Views for a Large Example �� 121

ANSI Joins ��� 122

Example �� 123

Summary��� 126

Chapter 7: Query the Database with Advanced SELECT Features ������������������������� 127

Operators, Functions, Expressions, and Conditions �� 128

Semantics �� 128

How to Know When We’re Missing Something �� 128

Precedence Rules �� 129

Simplify ��� 130

CASE and DECODE �� 131

Joins ��� 133

Partitioned Outer Joins �� 134

Lateral, Cross Apply, and Outer Apply �� 136

Equijoin or Non-equijoin �� 136

Semi-join or Anti-join��� 136

Self-joins ��� 138

Natural Joins and USING Considered Harmful ��� 139

Sorting �� 140

Sorting Syntax ��� 140

Sorting Performance, Resources, and Implicit Sorting �� 142

Table of ConTenTs

x

Set Operators �� 142

UNION and UNION ALL ��� 143

INTERSECT and MINUS �� 144

Set Operator Complications ��� 145

Advanced Grouping ��� 146

ROLLUP, GROUP*, CUBE�� 146

LISTAGG ��� 148

Advanced Aggregate Functions ��� 149

Analytic Functions ��� 150

Analytic Function Syntax ��� 150

Analytic Function Examples �� 151

Regular Expressions ��� 154

Regular Expression Syntax �� 154

Regular Expression Examples ��� 155

Regular Expression Limitations ��� 158

Row Limiting ��� 159

Row Limiting Clause �� 159

ROWNUM ��� 160

Analytic Function Row Limiting ��� 161

Pivoting and Unpivoting �� 162

Old Pivot Syntax��� 163

New Pivot Syntax ��� 164

UNPIVOT ��� 165

Table References��� 168

Flashback �� 168

Sample �� 169

Partition Extension Clause ��� 169

Common Table Expressions �� 170

Example ��� 170

PL/SQL Common Table Expressions �� 172

Table of ConTenTs

xi

Performance and Over-use �� 173

Recursive Queries ��� 174

CONNECT BY Syntax �� 174

Recursive Common Table Expressions �� 176

XML ��� 177

XMLType ��� 177

DBMS_XMLGEN and Creating XML �� 179

XMLTABLE �� 180

XML Programming Languages �� 181

JSON ��� 182

Build and Store JSON in the Database �� 182

Querying JSON �� 184

National Language Support��� 185

Character Sets ��� 186

Length Semantics �� 187

NLS Comparing and Sorting �� 188

Display Formats ��� 189

Summary��� 190

Chapter 8: Modify Data with Advanced DML �� 191

INSERT �� 192

UPDATE ��� 193

DELETE �� 194

MERGE �� 196

Updatable Views ��� 198

DML Hints �� 199

Error Logging �� 201

Returning �� 203

TRUNCATE ��� 204

COMMIT, ROLLBACK, and SAVEPOINT�� 207

ALTER SYSTEM �� 209

Table of ConTenTs

xii

ALTER SESSION ��� 211

Input and Output ��� 212

Useful PL/SQL Packages ��� 214

Summary��� 217

Chapter 9: Improve the Database with Advanced Oracle Schema Objects ����������� 219

ALTER �� 219

Tables �� 221

Table Types �� 221

Table Properties ��� 225

ALTER and DROP Table �� 229

Column Types and Properties �� 229

Constraints �� 231

Constraint Performance Impact ��� 232

Altering Constraints ��� 232

Constraint Exceptions �� 233

NOVALIDATE and Parallel Constraints �� 234

Other Constraints ��� 236

Indexes �� 237

Index Concepts �� 237

Index Features ��� 239

Rebuilding Indexes �� 242

Partitioning �� 243

Partitioning Concepts �� 243

Partitioning Features ��� 246

Views �� 248

Creating Views ��� 248

Expanding Views ��� 249

Users ��� 250

Sequences �� 252

Synonyms ��� 254

Table of ConTenTs

xiii

Materialized Views �� 254

Materialized Views for Multi-table Constraints ��� 255

Database Links ��� 257

PL/SQL Objects ��� 259

Other Schema Objects �� 260

Global Objects ��� 260

GRANT and REVOKE �� 261

Summary��� 263

Chapter 10: Optimize the Database with Oracle Architecture ������������������������������ 265

Redo �� 265

Redo in Theory ��� 266

Redo in Practice �� 266

Undo and Multiversion Read Consistency ��� 268

Undo for Rollback �� 268

Undo for Multiversion Consistency �� 270

Storage Structures �� 272

Column Values ��� 273

Row Pieces �� 274

Blocks and Row-Level Locking �� 275

Extents ��� 277

Segments �� 277

Data Files ��� 278

Tablespaces ��� 279

Automatic Storage Management ��� 280

Wasted Space �� 281

Temporary Tablespace �� 282

Memory ��� 283

Caches �� 285

Database Types ��� 287

Summary��� 289

Table of ConTenTs

xiv

Part III: Write Elegant SQL with Patterns and Styles ���������������������������������� 291

Chapter 11: Stop Coding and Start Writing��� 293

The Hypocrisy of Examples ��� 294

Comments ��� 295

Comment Styles �� 295

Comment Mechanics ��� 296

Comment ASCII Art �� 297

Choose Good Names ��� 298

Name Styles �� 298

Avoid Quoted Identifiers �� 299

Name Length and Changes ��� 300

Whitespace ��� 301

Make Bugs Obvious �� 302

Fail Fast ��� 303

Avoid Pokémon Exception Handling �� 303

Use Bad Names and Weird Values ��� 305

Use Fragile SQL ��� 306

The Path to Writing Good SQL ��� 307

Summary��� 308

Chapter 12: Write Large SQL Statements ��� 309

Imperative Programming Size Limits Do Not Apply �� 309

One Large SQL Statement vs� Multiple Small SQL Statements ��� 310

Performance Risks of Large SQL Statements ��� 312

Large SQL Parsing Problems ��� 312

Large SQL Increases Optimizer Risks �� 313

Large SQL Resource Consumption Problems �� 315

Performance Benefits of Large SQL Statements ��� 316

Large SQL Improves Clarity ��� 316

Large SQL Increases Optimizer Opportunities ��� 316

Large SQL Reduces Input/Output �� 318

Table of ConTenTs

xv

Large SQL Reduces Context Switches ��� 318

Large SQL Improves Parallelism �� 319

Reading and Debugging Large SQL Statements ��� 321

Inside Out �� 321

Navigating Inline Views ��� 322

Summary��� 325

Chapter 13: Write Beautiful SQL Statements �� 327

How to Measure Code Complexity �� 328

Avoid Unnecessary Aliases ��� 329

Prefixes and Suffixes �� 330

Object and Variable Names ��� 331

Referencing Tables and Columns �� 331

Avoid Abbreviations ��� 332

Use Tabs for Left Alignment �� 333

Avoid Code Formatters �� 336

Lower Case ��� 337

Summary��� 338

Chapter 14: Use SQL More Often with Basic Dynamic SQL ����������������������������������� 339

When to Use Dynamic SQL �� 339

Running DDL �� 340

Unknown Until Run Time ��� 341

Simplify Privileges ��� 342

Rule Engines �� 343

When Not to Use Dynamic SQL �� 343

Basic Features �� 344

Bind Variables for Performance and Security ��� 345

How to Simplify String Concatenation �� 347

Multiline Strings �� 347

Alternative Quoting Mechanism �� 348

Templating ��� 350

Table of ConTenTs

xvi

Code Generation, Not Generic Code �� 351

Summary��� 353

Chapter 15: Avoid Anti-Patterns ��� 355

Avoid Second System Syndrome and Rewriting from Scratch ��� 355

Avoid Stringly Typed Entity–Attribute–Value Model �� 357

EAV Pros and Cons �� 357

Never Use the Wrong Type ��� 358

Subtle Conversion Bugs in Oracle SQL �� 359

Avoid Soft Coding �� 361

Avoid Object-Relational Tables �� 362

Avoid Java in the Database ��� 364

Java Is Not Always Available ��� 364

Java Does Not Fit Perfectly ��� 364

SQL and PL/SQL Are Almost Always Better Choices �� 365

Avoid TO_DATE �� 365

Avoid String-to-Date Conversion ��� 366

Use DATE, TIMESTAMP, and INTERVAL Literals �� 367

Avoid CURSOR ��� 368

Avoid Custom SQL Parsing �� 370

Avoid Automating Everything �� 372

Avoid Cargo Cult Syntax �� 373

Avoid Undocumented Features ��� 373

Avoid Deprecated Features ��� 374

Avoid Simplistic Explanations for Generic Errors �� 374

Dead Processes ��� 375

Deadlocks �� 375

Top of the Error Stack �� 376

Avoid Unnecessarily Small Parameters �� 377

Anti-Patterns Discussed in Other Chapters ��� 378

Summary��� 378

Table of ConTenTs

xvii

Part IV: Improve SQL Performance ��� 379

Chapter 16: Understand SQL Performance with Algorithm Analysis �������������������� 381

Algorithm Analysis Introduction �� 382

O(1/N) – Batching to Reduce Overhead �� 386

O(1) – Hashing, Other Operations �� 388

How Hashing Works ��� 388

Hash Partitioning ��� 390

Hash Clusters �� 391

Hash Joins ��� 392

Other �� 392

O(LOG(N)) – Index Access �� 393

1 /((1-P)+P/N) – Amdahl’s Law �� 395

O(N) – Full Table Scans, Other Operations �� 397

O(N*LOG(N)) – Full Table Scan vs� Index, Sorting, Joining,
Global vs� Local Index, Gathering Statistics �� 398

Full Table Scan vs� Index ��� 399

Sorting ��� 400

Joining ��� 401

Global vs� Local Index �� 404

Gathering Optimizer Statistics ��� 404

O(N^2) – Cross Joins, Nested Loops, Other Operations �� 407

O(N!) – Join Order ��� 409

O(∞) – The Optimizer ��� 409

Summary��� 410

Chapter 17: Understand SQL Tuning Theories �� 411

Managing User Expectations �� 411

Performance Tuning State of Mind �� 412

Performance Tuning Is Not Debugging �� 413

Motivated Troubleshooting �� 413

Table of ConTenTs

xviii

Different Approaches ��� 414

Why Not Database Tuning? �� 416

Declarative Programming (Why Execution Plans Are Important) �� 416

Declarative Quirks ��� 416

Execution Plans ��� 417

Operations (What Execution Plan Decisions Are Available) ��� 418

Operation Details ��� 419

Execution Plans and Recursive SQL �� 419

Why Operations Matter �� 420

First Operations ��� 421

Joining ��� 421

Table Access �� 423

Index Access �� 424

Grouping and Sorting ��� 425

Set Operators ��� 425

Optimizer Statistics ��� 426

Parallel��� 426

Partition ��� 429

Filter �� 430

Other �� 431

Cardinality and Optimizer Statistics (Building Execution Plans I) ��� 432

Cardinality Is Important ��� 433

Cardinality Differences �� 435

Cost Doesn’t Matter ��� 436

Optimizer Statistics ��� 436

Optimizer Statistics Example ��� 438

Transformations and Dynamic Optimizations (Building Execution Plans II) ������������������������������ 440

Transformations ��� 440

Adaptive Cursor Sharing and Adaptive Statistics �� 442

Adaptive Query Plans �� 444

Table of ConTenTs

xix

Clear, Simple, and Wrong �� 447

Summary��� 448

Chapter 18: Improve SQL Performance �� 449

Application Tuning – Logging and Profiling ��� 449

Logging �� 450

Profiling – DBMS_PROFILER �� 451

Profiling – DBMS_HPROF �� 453

Application Tuning Through Batching �� 454

Installation and Patch Scripts �� 455

OLTP Applications �� 457

Data Warehouses ��� 458

Database Tuning �� 459

Measure Database Performance ��� 460

Automatic Workload Repository (AWR) �� 463

Active Session History (ASH) ��� 465

Automatic Database Diagnostic Monitor (ADDM) �� 466

Advisors ��� 468

Other Tools ��� 469

SQL Tuning – Find Slow SQL ��� 470

Get Organized �� 470

Slow Is Based on DB Time ��� 470

Find Currently Running Slow SQL �� 471

Find Historically Slow SQL ��� 473

SQL Tuning – Find Execution Plans ��� 473

Graphical Execution Plans Considered Harmful �� 473

Text Is Best �� 475

DBMS_XPLAN Functions ��� 477

DBMS_XPLAN FORMAT Parameter �� 478

Note Section �� 479

Other Ways to Get Execution Plans �� 480

Table of ConTenTs

xx

SQL Tuning – Find Actual Times and Cardinalities for Operations �� 480

GATHER_PLAN_STATISTICS ��� 481

Real-Time SQL Monitor Reports (Text) ��� 485

Real-Time SQL Monitor Reports (Active) ��� 488

Degree of Parallelism �� 489

What to Look for in Execution Plans �� 491

SQL Tuning – Changing Execution Plans ��� 493

Changing Execution Plans ��� 493

Hints �� 495

SQL Profile Example �� 497

SQL Tuning – Gathering Optimizer Statistics �� 499

Manual Statistics ��� 499

Automatic Statistics �� 501

Other Statistics �� 501

Summary��� 503

Part V: Solve Anything with Oracle SQL �� 505

Chapter 19: Solve Challenging Problems with Arcane SQL Features ������������������� 507

Oracle vs� the Unix Philosophy �� 507

MODEL �� 508

Row Pattern Matching �� 512

Any Types �� 513

APEX �� 515

Oracle Text �� 517

Other Features �� 519

Advanced Analytics (Data Mining) ��� 519

Spatial ��� 519

OLAP �� 519

Property Graph �� 520

Virtual Private Database �� 520

Table of ConTenTs

xxi

Database In-Memory ��� 521

Advanced Compression ��� 521

Summary��� 521

Chapter 20: Use SQL More Often with Advanced Dynamic SQL ���������������������������� 523

Parsing �� 523

PL/Scope ��� 524

PLSQL_LEXER �� 525

ANTLR �� 526

DBMS_SQL �� 528

DBMS_XMLGEN ��� 529

PL/SQL Common Table Expressions �� 531

Method4 Dynamic SQL �� 532

Polymorphic Table Functions �� 533

Method5 �� 534

Summary��� 535

Chapter 21: Level Up Your Skills with PL/SQL �� 537

Is PL/SQL Worth Mastering?�� 537

The Focus Is Still on SQL��� 538

Create a PL/SQL Playground ��� 538

PL/SQL Integration Features ��� 539

Tips for Packaging Code �� 540

Session Data �� 540

Transactions I – COMMIT, ROLLBACK, and SAVEPOINT �� 543

Transactions II – Implicit Cursor Attributes �� 545

Transactions III – Row-Level Locking �� 546

Transactions IV – Isolation and Consistency �� 547

Simple Variables �� 549

Cursors �� 551

Records ��� 554

Table of ConTenTs

xxii

Collections ��� 556

Functions ��� 559

Table Functions ��� 561

Pipelined Functions ��� 563

Parallel Pipelined Functions �� 564

Autonomous Transactions for DML and DDL ��� 565

Autonomous Transactions for Logging �� 566

Definer’s Rights vs� Invoker’s Rights ��� 568

Triggers �� 569

Conditional Compilation ��� 574

Other PL/SQL Features �� 575

Start Teaching and Creating �� 575

Teach Others �� 576

Create Open Source Projects ��� 576

Part VI: Appendices �� 579

Appendix A: SQL Style Guide Cheat Sheet �� 581

Appendix B: Computer Science Topics ��� 583

 Index ��� 585

Table of ConTenTs

xxiii

About the Author

Jon Heller is an expert SQL and PL/SQL programmer with

17 years of Oracle experience. During that time he has

worked as a database analyst, developer, and administrator.

In his spare time, he is active on Stack Overflow where

he is a top user in the Oracle and PL/SQL tags. He enjoys

creating open source software for Oracle, such as the remote

execution program Method5. He has a master’s degree in

computer science from North Carolina State University and

lives in Iowa with his wife and two sons.

xxv

About the Technical Reviewer

Michael Rosenblum is a Software Architect/Senior DBA at

Dulcian, Inc., where he is responsible for system tuning and

application architecture. He supports Dulcian developers

by writing complex PL/SQL routines and researching new

features. He is the coauthor of PL/SQL for Dummies (Wiley

Press, 2006) and Oracle PL/SQL Performance Tuning Tips

and Techniques (Oracle Press, 2014), contributing author of

Expert PL/SQL Practices (Apress, 2011), and author of many

database-related articles and conference papers. Michael

is an Oracle ACE and frequent presenter at conferences (Oracle OpenWorld, ODTUG,

IOUG Collaborate, RMOUG, NYOUG, etc.).

xxvii

Acknowledgments

A lot of people helped make this book possible. First I’d like to thank the technical

reviewer, Michael Rosenblum, who provided many corrections and insightful comments.

Thanks to everyone at Apress who supported the creation of this book. Especially

Jonathan Gennick, who provided excellent guidance and feedback. And thanks to

everyone else at Apress: Jill Balzano, Laura Berendson, and many others.

I want to thank the people who helped me flourish and get to a point in life where

I was able to write a book: my parents for creating an environment where success

seemed inevitable; my coworkers at National Instruments, Talecris, PPD, IFMC, Terra

Technology, GDIT, and Ventech Solutions; users who helped me improve my open

source programs; conference organizers who gave me a chance to present; and users on

Stack Overflow who motivated me to do a ridiculous amount of work to win meaningless

Internet points.

I’m grateful for the people who create and curate the wealth of knowledge that

helped create this book: Jonathan McDowell for creating the JSR Launch Vehicle

Database which is used for the space data set and the countless people who contributed

to the Oracle manuals and Wikipedia articles that helped me throughout this book.

Most importantly, I would like to thank my wife, Lisa, for always supporting me while

still doing so much to help our family and our community. And thanks to my kids, Elliott

and Oliver, who encouraged me and waited for me to finish so I would have time to play

with them again.

xxix

Introduction

This book will set you on the path to becoming an Oracle SQL expert. It will inspire you

to achieve more with your database queries.

This book is not a copy of the SQL Language Reference, will not quiz you about syntax

trivia, and will not prepare you for an exam. But it will challenge the way you think about

writing Oracle SQL. And I hope you have fun reading it.

 Why Learn More About Oracle SQL?
Any database can store data, but Oracle is designed to help us process data. Many

applications treat the database as a glorified text file, and there are many opportunities

to use the database engine to improve our programs.

Oracle SQL is a great programming language and has many advantages compared to

other languages and SQL implementations.

 1. Declarative: Declarative languages let us tell the computer what

we want, without having to specify how to do it. Declarative

languages are different than traditional imperative languages

and can be difficult at first. (Whenever we find ourselves wanting

to use a loop in SQL, that’s a clue we’re thinking in the wrong

programming paradigm.) Declarative languages let the compiler

handle the details, leading to simpler and faster code. But if

we need to control exactly how our code runs, we still have

imperative options, such as PL/SQL, hints, and the MODEL clause.

 2. Popular: Oracle is one of the most popular databases in the

world. And SQL is one of the most popular programming

languages in the world.

 3. Portable: SQL and PL/SQL are entirely platform independent.

Other than a rare bug, we never need to worry about which

operating system is running our SQL.

xxx

 4. Clear and concise: The basic syntax is simple and readable,

and the relational model is built on a few simple ideas. (If this

description doesn’t match your reality, Part III will explain how to

make your code look better.)

 5. Interpreted: Statements run immediately, without a separate

compilation step. Integrated development environments can

take advantage of interpreted languages and let us instantly run

programs, debug our code, and get results.

 6. Powerful: Oracle SQL has enough features to solve almost any

problem. For those rare exceptions, PL/SQL can handle them and

integrate perfectly with SQL.

 7. Fast: Oracle SQL is powerful enough to let us bring algorithms to

our data, instead of bringing data to our algorithms. Ignore those

shallow benchmarks that compare running SELECT COUNT(*)

FROM EMPLOYEE a thousand times. Real-world performance is

more complicated than that and depends more on an optimizer1

than the speed of running trivial commands.

Despite all those advantages, Oracle SQL is scandalously under-used. There are huge

opportunities to improve our systems by using SQL more often.

 Target Audience
This book is for anyone who already knows Oracle SQL and is ready to take their skills to

the next level. For those of you who are already skilled at Oracle SQL, this book will give

you a different way to think about the language.

There are many groups of people who frequently use Oracle databases. Their reasons

for using the database may differ, but they can all benefit from improving their SQL

knowledge.

1 The Oracle optimizer is a complex program that builds execution plans for SQL statements.
Execution plans are based on many factors, such as system and session settings, statistical
information about tables and columns, hints, profiles, query structure, etc.

InTroduCTIon

xxxi

 1. Database developers: If you’re already frequently using an

Oracle database, then you have the most to gain from this book.

This book will help you with many phases of your software

development life cycle. Even if you already know many of the

advanced features, you will still benefit from the discussions about

setting up the environment, SQL programming styles, and SQL

performance tuning.

 2. Application/front end/full stack developers: Many applications

only use simple queries like SELECT * FROM EMPLOYEES or have

a framework that automatically takes care of database access.

This book won’t try to convince you to put all your business logic

inside the database. But it will help you find great opportunities to

simplify your code and improve performance, by using new SQL

programming styles and advanced features.

 3. Data analysts and testers: Oracle SQL is the perfect language for

analyzing, testing, and comparing data. Much of the advice in this

book will help with those tasks.

 4. Data scientists: You probably won’t use Oracle SQL for data

mining (although Oracle does have a data mining option). But if

you’re reading or writing to an Oracle database, Oracle’s advanced

features can at least help you with much of the tedious processing

and formatting.

 5. Database administrators: SQL is the life blood of an Oracle

database. If you administer Oracle, you’ll need to work with

those SQL statements and help others improve them. And there

are many times when an advanced SQL statement can help you

perform administrative tasks better.

 Book Structure
This book is divided into five parts. There is a progression between the sections and

chapters, but they are not tightly coupled. If you’re already good with Oracle SQL, you

should be able to skip between chapters without much difficulty.

InTroduCTIon

xxxii

Part I: Learn How to Learn (Chapters 1–5): The first part helps you create

the foundation for learning advanced Oracle SQL. However, these are not merely

introductory topics. This part contains controversial opinions. If you already have a

foundation, this book may suggest that you tear it down and start over.

Part II: Write Powerful SQL with Sets and Advanced Features (Chapters 6–10):

This part provides a clear mental model for thinking about queries. Then it introduces

you to the advanced features, schema objects, concepts, and architectural information

you need to start writing advanced SQL statements.

Part III: Write Elegant SQL with Patterns and Styles (Chapters 11–15): This

part teaches you the art of building beautiful SQL statements. You can’t simply take

the advanced features and throw them together. Instead, you must develop a style for

constructing readable queries.

Part IV: Improve SQL Performance (Chapters 16–18): This part helps you deal

with performance problems caused by using advanced features in large queries. It

discusses relevant computer science topics that help you understand SQL performance

and gives practical advice for solving common problems.

Part V: Solve Anything with Oracle SQL (Chapters 19–21): The last chapters show

you how to take your skills to the final level. This part introduces some of the most

advanced SQL features and briefly discusses PL/SQL.

This book is meant to introduce new ideas, features, styles, theories, and ways of

thinking. This book is meant to be interesting and easy to read. It may challenge you to

think differently about your styles and processes, but it is not meant to frustrate you with

syntax trivia. Don’t try to memorize all the syntax and parameters, it’s only important

that you remember the concepts.

 Example Schema
The examples in this book use a data set generated from the JSR Launch Vehicle

Database. The data set, and the simple installation instructions, can be found at

https://github.com/ProOracleSQL/space.

The schema is simple, small, real, and hopefully interesting. It is not merely a sample

schema of imaginary EMPLOYEES. The schema contains real data about all 70,000 orbital

and suborbital launches ever attempted. If you’re interested in space flight, you can use

the data to answer real questions.

InTroduCTIon

https://github.com/ProOracleSQL/space

xxxiii

The following are the main tables, listed roughly in order of importance and their

relationships. The columns and relationships are simple and are not explained here in

detail. There’s no need to study a large entity–relationship diagram, just spend a few

seconds to become familiar with the table names.

LAUNCH

 LAUNCH_PAYLOAD_ORG

 LAUNCH_AGENCY

SATELLITE

 SATELLITE_ORG

ORGANIZATION

 ORGANIZATION_ORG_TYPE

SITE

 SITE_ORG

PLATFORM

LAUNCH_VEHICLE

 LAUNCH_VEHICLE_MANUFACTURER

 LAUNCH_VEHICLE_FAMILY

STAGE

 STAGE_MANUFACTURER

LAUNCH_VEHICLE_STAGE

ENGINE

 ENGINE_MANUFACTURER

 ENGINE_PROPELLANT

PROPELLANT

The most important tables in the schema are LAUNCH and SATELLITE. The columns,

and the simple relationship between these two tables, are shown in Figure 1. Any non-

obvious columns will be explained before they are used in examples.

InTroduCTIon

xxxiv

Figure 1. Diagram of the two most important tables

 Running Examples
The examples in this book should work with any currently supported platform, edition,

and version of the Oracle database. At the time of writing, version 11.2 is the oldest

supported version of Oracle. To be safe, I assume you are using version 11.2. This book

includes a warning whenever a feature or example will only work in 12c or 18c. In

practice, the version doesn’t make a big difference. The vast majority of information in

this book applies to any version of Oracle.

While the examples and results are usually shown as text, I strongly recommend

you use a graphical integrated development environment (IDE) to run the examples

and view the results. An IDE is essential for creating, reading, and debugging large and

advanced SQL statements.

Many of the examples return thousands of rows. To save space, this book only shows

the first three rows, followed by an ellipsis to indicate more rows are not shown.

To avoid repeating the schema name, the examples assume the space data set is

installed in your personal schema. If you install the data set on a separate schema, run a

command like this in your session before you run the examples:

alter session set current_schema=space;

InTroduCTIon

xxxv

Just like the data set, all the code examples used in this book can be found at

https://github.com/ProOracleSQL/space. You can clone that repository and create a

GitHub issue if you find any mistakes.

Don’t let the data set and examples scare you. This book is about SQL development

processes, advanced features, programming styles, and performance concepts. Running

the examples is helpful but is not necessary for reading this book and understanding the

material.

InTroduCTIon

https://github.com/ProOracleSQL/space

PART I

Learn How to Learn

3
© Jon Heller 2019
J. Heller, Pro Oracle SQL Development, https://doi.org/10.1007/978-1-4842-4517-0_1

CHAPTER 1

Understand Relational
Databases
Understanding the history and theory behind relational databases helps us make

sense of things and avoid common traps. But there are also many times when we need

to ignore the theory and build practical solutions. This book assumes you are already

familiar with relational databases and SQL; the information provided here is not merely

introductory, it is foundational.

 History of Relational Databases
A brief history of relational databases helps us appreciate the importance of this

technology and helps us understand Oracle Corporation’s decisions. The Oracle

database is a huge product and contains mistakes. Some of those mistakes are

unimportant historical curiosities, but others are huge pitfalls we need to avoid.

Relational databases are built on the relational model and relational algebra, first

publically described by E.F. Codd in 1970.1 The relational model is built on set theory,

a mathematical way of dealing with collections of objects. The relational model is

discussed in more detail in the next section.

IBM started working on relational technology and products in 1968. Here’s the

first history lesson: best is the enemy of good enough. Larry Ellison heard about IBM’s

project, implemented it, and released the first commercially available SQL database

1 Codd, E. F. (1970). “A Relational Model of Data for Large Shared Data Banks.” Communications of
the ACM. 13 (6): 377–387.

4

in 1979.2 He has a huge presence in the database world and is still involved with many

database decisions to this day.

Oracle Corporation has certainly used its first-mover advantage. The Oracle database

has been the most popular database product for a long time. There are current trends

away from Oracle and SQL, but we shouldn’t overlook how incredibly popular they are.

The database scores high on almost any database popularity metric.3

Oracle’s age explains many of its unexpected behaviors. The following list

contains the features that are most likely to confuse database developers who are

new to Oracle.

 1. (+): Oracle originally used syntax like (+) instead of keywords like

LEFT JOIN. That old-fashioned syntax is bad coding practice and

is discussed in more detail in Chapters 6 and 7.

 2. Date: An Oracle date contains a time and should be called a

DATETIME. Date formatting was awkward before the introduction

of ANSI date literals, as discussed in Chapter 15.

 3. Empty string: Oracle treats an empty string as null, instead of a

distinct value as most programmers expect. (Although I would

argue that Oracle is not necessarily wrong here. We don’t have

zero-length dates, or zero-length numbers; why should we have

zero-length strings?)

 4. 30-byte name limit: The SQL and PL/SQL languages have an

English-like syntax, but we’ll quickly hit the 30-byte limit if we use

regular words for names. Good variable names are important to

make our programs more readable. Luckily this problem is fixed in

version 12.2, which allows 128 bytes.

 5. SQL*Plus quirks: SQL*Plus is a great tool for some tasks, but it’s

really showing its age in many ways.

In Oracle’s defense, those mistakes were made before any standards existed. On

the other hand, Oracle doesn’t always make a good effort to comply with standards.

For example, Oracle used to claim “partial” compliance for allowing long names.

2 See www.ukcert.org.uk/history_of_oracle_scott_hollows_oncalldba.pdf
and https://docs.oracle.com/database/121/SQLRF/intro001.htm#SQLRF50932.

3 Such as https://db-engines.com/en/ranking.

Chapter 1 Understand relational databases

http://www.ukcert.org.uk/history_of_oracle_scott_hollows_oncalldba.pdf
https://docs.oracle.com/database/121/SQLRF/intro001.htm#SQLRF50932
https://db-engines.com/en/ranking

5

While 30 bytes is “part” of a bigger number, that doesn’t really meet the spirit of the

standard.4

More important than excusing Oracle’s mistakes, it helps to see how Oracle

Corporation responds to industry trends. Sometimes it feels like they have a “fire and

motion” strategy for their technologies. They add so many features that nobody can

possibly keep up with them.5 However, adding a huge number of features may be

backfiring now. The Unix philosophy of building small tools for each task seems to be

taking over.

The following list shows the largest architectural and conceptual changes made to

Oracle, along with the version it was introduced. These are not necessarily the most

important features, but the features that tried to redefine what a database is.

• Multiversion concurrency control (MVCC): 4

• PL/SQL: 6

• Object-relational: 8

• Java: 8

• OLAP: 9

• XML, JSON, documents: 9, 12, 18

• RAC, sharding: 9, 12

• In-Memory: 12

• Containers (multitenant): 12

• Property graph: 18

• Autonomous database: 18

Adding new features rarely hurts sales. But some of those features move Oracle

in a wrong direction. For example, object-relational, Java in the database, and

multitenant containers all have problems. Those shortcomings are discussed in

Chapters 10 and 15.

4 The Oracle manual lists its compliance with different standards, although I’m not sure why they
bother: https://docs.oracle.com/cd/B19306_01/server.102/b14200/ap_standard_sql004.
htm.

5 Joel Spolsky discusses this strategy here: www.joelonsoftware.com/2002/01/06/
fire-and-motion/.

Chapter 1 Understand relational databases

https://docs.oracle.com/cd/B19306_01/server.102/b14200/ap_standard_sql004.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/ap_standard_sql004.htm
https://www.joelonsoftware.com/2002/01/06/fire-and-motion/
https://www.joelonsoftware.com/2002/01/06/fire-and-motion/

6

Oracle will always add a new feature to catch up with competitors, even if that

feature doesn’t make sense. Not everything Oracle Corporation does is the “future.”

Oracle is a huge product that sometimes moves in multiple, contradictory directions

at the same time. We need to remember to not drink the Kool-Aid and not throw out

proven technology for shiny new things.

On the other hand, it’s good that Oracle supports almost everything. It’s a Swiss- army

knife for database solutions. We don’t need a new database for each new technology

trend.

The pace of technological change is accelerating, and nobody can predict the future.

Given the past, it’s safe to say that Oracle will add or invent new and important features.

We don’t always want to start using new features immediately. But we should at least

take the time to read about them in the “New Features” chapter of the manual.

 Relational Model and Why It Matters
The relational model has been immensely influential in computer science and

programming. There are many papers, books, and classes related to the theory of

relational database systems. We can be successful SQL developers without a thorough

understanding of the relational model, but we should at least have an introductory

understanding.

 History
The relational model is the theoretical foundation for the Oracle database. It was first

described by E.F. Codd’s 1970 paper “A Relational Model of Data for Large Shared Data

Banks.” I recommend you read that paper; it’s surprisingly accessible and still relevant.

Most of this section is based on that original paper, although E.F. Codd and others have

expanded on the relational model in other works.

Chapter 1 Understand relational databases

7

 Terminology
Understanding the relational model can at least help us understand other people.

There’s rarely a good reason to use the theoretical words relation, tuple, and attribute,

instead of the more common table, row, and column. Even E.F. Codd’s paper uses those

common words in several places. But since some people are going to insist on using the

fancy words, we might as well learn them.

Table 1-1 is copied straight from Codd’s original paper. There’s a relation (table)

named SUPPLY. It has three tuples (arrays or rows) and four simple domains (attributes,

fields, or columns), meaning it has a degree of four. The primary key uniquely identifies

the row and is the combination of SUPPLIER, PART, and PROJECT, each of which is also a

foreign key to another relation. Foreign keys ensure that lookup values actually exist in

the tables they refer to.

 Simplicity
The relational model is all about simplicity. It’s not more powerful than other

systems, just easier to use. (So don’t worry, there won’t be any proofs or formulas in

this section.)

Simplicity is achieved by removing redundancy and nonsimple domains through

normalization with primary keys. In practice those concepts translate into two rules:

do not store lists of values and do not repeat a column. In the preceding SUPPLY table,

it would be a huge mistake to add columns like DELIVERY_DATES or SUPPLIER_NAME,

even though those columns may seem convenient at first. DELIVERY_DATES, possibly

a comma- separated list of values, would be easy to read but difficult to filter or join.

SUPPLIER_NAME might look good right next to the supplier number, but it would be a

duplicate of the value already in the SUPPLIER table.

Table 1-1. Supply

Supplier Part Project Quantity

1 2 5 17

1 3 5 23

2 3 7 9

Chapter 1 Understand relational databases

8

The rules of the relational model can be summarized as follows: make the schema

smart but keep the tables dumb. It’s the relationships between the tables that matter.

Those relationships take place through constraints and joins, but those constraints and

joins can’t work if the data is not simple.

 Sets and Tables
Thinking about the database in terms of simple relationships, or just as simple sets, is

one of the keys to writing great Oracle SQL. We use the relational model to retrieve sets,

join them into new sets, join those sets together, etc. Like with user interface design, two

simple choices are better than one difficult choice. Forming a good mental model of

database sets and tables is going to take a while, don’t feel bad if you don’t get it yet. The

topic is discussed a lot throughout the book.

It’s easy to take tables for granted because they’re so common now. We use them

not just in databases but in spreadsheets, HTML, and many other places. We shouldn’t

avoid important data structures just because they appear too simple at first glance.

When we run into a difficult problem putting data into a table, the answer is to create

more tables.

 Problems Implementing a Relational Model
Codd’s paper predicted difficulties implementing a relational model. His fears have

proved to be well founded.

Abstracting the storage mechanisms gives the database system a lot of

responsibilities. The database must create and maintain the data structures and choose

algorithms to access those data structures. If Niklaus Wirth’s book title Algorithms + Data

Structures = Programs is true, databases have a lot of work to do. This is a problem, but a

problem the Oracle database has already solved for us. We can use the relational model

and let Oracle do the heaving lifting for us. For example, when we update an indexed

column, we don’t need to know exactly how the index is maintained. Index maintenance

algorithms are a problem for Oracle Corporation programmers and the reason why we

pay them for their software.

Unfortunately Oracle cannot automate everything. Oracle provides many storage

options like indexes, caches, in-memory column stores, etc. And it provides ways to

gather data about those relationships through things like multicolumn statistics. There

Chapter 1 Understand relational databases

9

are many complicated trade-offs between performance and storage, and we must help

decide when a trade-off is worthwhile. When dealing with N columns, there are at least

N! permutations6 of how to store them.

Despite Codd’s insistence on normalization in his paper, Codd also knew that

redundant data was inevitable. Inconsistency of redundant data is hard to prevent

because inconsistency is a state, not a specific action. E.F. Codd predicted the use of a

metadata system to identify redundancies, and those redundancies could be prevented

either in real time or as a batch job. As far as I know, an automated system to prevent

redundancies does not exist. Perhaps some future version of Oracle will have an ASSERT

functionality to fill this gap in our relational model implementation. For now, it is up to

us to be aware of inconsistency problems and use a disciplined approach to mitigate

them. Simply stated: if we create a wrong column, it’s our problem.

 Relational Model and Why It Doesn’t Matter
There is no perfect model for the world. Abstractions are built to simplify things, but

inevitably those abstractions don’t fit, or they cover up an important detail that must be

dealt with. Fanatically adhering to the relational model will cause problems.

Don’t be fooled by books and products that offer a false choice; we don’t have to

choose between a pure relational solution or completely abandon the relational model.

Current relational databases, and the SQL language, don’t have to be perfect to be

useful. We must avoid the temptation to search for pure and true solutions and embrace

practical compromises.

The following sections discuss parts of the relational model that don’t always work in

practice. The good news is that there’s always a workaround.

 The NULL Problem Isn’t a Problem
One of the biggest theoretical complaints about relational databases is the way they use

NULL. Three-valued logic with nulls is weird and takes time to get used to. Table 1-2

shows one of many possible truth tables it takes to explain how NULL works.

6 “!” is the factorial operation. It can be used to calculate the number of ways to order N items. It
is the product of all integers less than or equal to N. For example, 3! = 3 * 2 * 1 = 6. The numbers
grow very rapidly, even faster than exponential growth. 4! = 24, 5! = 120, 6! = 720, etc. This
operation will show up a few times throughout the book.

Chapter 1 Understand relational databases

10

NULLs are weird, but so is our data. There are many times when we don’t know

something. It might be tempting to replace NULL with a list of reasons why we

don’t know something. But there are many times when we don’t even know why

we don’t know something. And those lists of reasons can grow quickly and become

ridiculous.

NULLs could be eliminated by creating a separate table for every nullable column.

But creating such a large collection of tables quickly becomes a huge mess.

For example, some people don’t have a first name, or a middle name, or a

last name. Instead of using nullable columns to store an employee’s name, we

could create separate tables EMPLOYEE_FIRST_NAME, EMPLOYEE_MIDDLE_NAME, and

EMPLOYEE_LAST_NAME. Each table only has two values, an EMPLOYEE_ID and a NAME.

If an employee is missing a middle name, there will be no row in EMPLOYEE_MIDDLE_

NAME for their EMPLOYEE_ID. Congratulations, we just created a schema without any

NULLs. But now we need to join four tables just to find a person’s name. And if other

columns become nullable in the future, we have to make significant changes to the

schema, instead of just altering a single column. Person names can be complicated,

and it may sometimes make sense to store them in multiple tables. But don’t do it

out of a fear of NULL.

It feels unnatural the way NULL = NULL returns unknown, which in most

contexts translates to FALSE. And it’s annoying when we write a NOT IN that

compares against a NULL and doesn’t return any results. But those problems don’t

mean our databases contain a ticking time bomb, like some horrible Y2K bug

waiting to ruin everything. Unknown data creates challenges, but we need to be

comfortable with uncertainty.

Table 1-2. NULL Three-Valued Logic

A B = !=

1 1 true False

1 0 False true

1 nUll Unknown Unknown

nUll nUll Unknown Unknown

Chapter 1 Understand relational databases

11

 Column Order Matters
The physical order of columns and rows does not matter in the relational model.

Physical data independence is a big improvement over systems where the order was

important. Data independence is not merely a historical problem, it still happens if we

mistakenly add complex, formatted data in a single value.

E.F. Codd’s paper does not imply that the logical column order is unimportant. The

examples in his paper have a meaningful order that helps the reader understand the

relationships between the columns. Grouping similar columns, and listing them in the

same order across different tables, makes his examples easier to read. A meaningful

column order can also make our schemas easier to read.

Our systems might have a user guide, a fancy entity–relationship (ER) diagram,

PDF file, and other forms of documentation. But the primary interface to our

schema is a simple SELECT statement. Other SQL developers view and understand

our tables based on the output from SELECT * FROM SOME_TABLE, not from an out-

of-date PDF file.

We shouldn’t just throw new columns on the end of tables. We should take the time

to shift the columns around, if it makes sense. Changing column order only takes a few

minutes. In early versions of Oracle, columns can be adjusted using a combination of

adding temporary columns, updating the table, and then dropping temporary columns.

Since 12.1, columns can be moved even more easily by setting them to INVISIBLE and

then back to VISIBLE. Those few minutes are only spent once; a bad table design can

annoy us for years.

 Denormalization
Ideally our relational databases are fully normalized, contain no non-atomic values, and

contain no redundant values. It is reasonable to have a firm “no non-atomic values” rule

and forbid anyone from ever adding comma-separated lists as values. However, it’s not

always realistic to insist on preventing redundant values. Not every system should be in

third normal form.

There are times when performance requires writing the data multiple times, to

improve read time. This may mean adding a second version of a column somewhere and

synchronizing them with triggers. Or possibly creating a materialized view, like taking a

point-in-time snapshot of pre-joined tables. This is a complex trade-off between storage,

speed, and consistency.

Chapter 1 Understand relational databases

12

There are many systems where this trade-off must be made. It doesn’t break

the relational model to do this. E.F. Codd’s paper discussed the problems with

denormalization. But his paper also acknowledged that denormalization is going to

happen anyway.

 All Rows Are Distinct
The relational model is built on sets, and a set cannot have duplicate elements. This

implies that all rows, and all query results, should be unique.

It could be helpful to have a system that enforced the uniqueness of all SQL query

results. It almost never makes sense to have truly duplicate values – there should always

be a unique way to identify a value. We’ve all been guilty of throwing an extra DISTINCT

operator at a query, just in case.

But it is not practical to always enforce that rule. There are only so many ways to

detect duplicate values, and each way requires either a large amount of storage, extra

processing time, or both. Sorting and hashing large data sets is so painful that it’s better

to live with the possibility of duplicates than to always check the results.

 SQL Programming Language
A relational model is not enough, we need a specialized programming language to

interact with the database. There have been many attempts to create such a language,

and SQL is the winner.

 History and Terminology
In 1970, E.F. Codd’s paper discussed the need for a data language: a relational algebra

formed by combining relational operators. And preferably a simple one, meant to deal

with simple relations.

Not all relational operations are relevant in typical database activity. Like with the

relational model, knowing some of the names can at least help us understand what other

people are talking about. Projection is choosing only certain columns. Join, of course,

is combining relations together. Restriction or selection limits the tuples of a relation,

by applying predicates. (That means results are filtered by functions that return true

Chapter 1 Understand relational databases

13

or false.) A Cartesian product (CROSS JOIN) results in a set that includes all possible

combinations of elements from two sets. Set union (UNION ALL) combines all elements of

a set, and set difference (MINUS) returns the difference between sets.

In the 1960s, IBM created the Structured English Query Language, SEQUEL. But

don’t use history to prove a point about how to properly pronounce “SQL.” Just accept

the fact that it’s commonly pronounced “S-Q-L” with databases like PostgreSQL and

MySQL. And it’s commonly pronounced “SEQUEL” with databases like SQL Server and

Oracle.

Oracle favors English-like syntaxes over cryptic syntaxes. SQL is somewhat similar

to COBOL, in that they both have English-like syntaxes and were both designed for

business users. The later addition of PL/SQL made similar design decisions. It uses what

might be called a “Wirth” syntax, similar to languages designed by Niklaus Wirth. That

is, it uses plain English words like BEGIN and END instead of curly brace characters, like

in C++. Another common sense feature of Oracle is that lists start with 1, not 0. If we find

ourselves creating a program that looks like a screen in the Matrix, we have strayed far

from the intended path.

SQL frequently shows up near the top of programming language popularity lists.7

And those sites likely still underestimate the language’s real popularity, since many

non-programmers use SQL but aren’t responding to developer surveys. PL/SQL isn’t a

top-tier language, but it’s surprisingly close.8

 SQL Alternatives
The world is full of query languages. There’s XQuery for dealing with XML, Cypher for

querying graph databases, REST APIs for querying data over the Internet, and many

more. But when it comes to querying relational data, SQL is by far the best choice.

For querying relational data, the SQL alternatives are only of academic or historical

interest. Languages like QUEL, Rel, and Datalog may be interesting, but not practical.

Technology is not always a popularity contest, but SQL is so dominant that it would

7 SQL was the second most used language on the Stack Overflow developer survey, https://
insights.stackoverflow.com/survey/2017/#technology, and is in the top 5 for Stack
Overflow questions when we combine the SQL tag with specific SQL implementations, https://
stackoverflow.com/tags?tab=popular.

8 PL/SQL is consistently in the top 20 of this common programming language ranking: www.tiobe.
com/tiobe-index/.

Chapter 1 Understand relational databases

https://insights.stackoverflow.com/survey/2017/#technology
https://insights.stackoverflow.com/survey/2017/#technology
https://stackoverflow.com/tags?tab=popular
https://stackoverflow.com/tags?tab=popular
https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/

14

be ridiculous to not use it for relational queries. Even if another language was better,

it wouldn’t have the huge number of programs built to use it, or the huge number of

people familiar with it.

Is SQL a safe bet for the future? It’s foolish to predict that a better technology won’t

be invented. But it is reasonable to predict that a significantly better technology will not

replace it in the near future.

Some languages grow old and fade away, but some languages are timeless. C

and Lisp are older than SQL, but they’re not going away anytime soon. Writing

about technology over 30 years ago, Fred Brooks warned us to not expect any “silver

bullets” for software development. That is, don’t expect a single new technology

to provide order-of- magnitude improvements. SQL is a high-level language that’s

always evolving; it’s possible the language is as good as we’ll ever get for querying

relational data.

Some people hold out hope that a visual programming language will someday make

database queries easier. Unfortunately that is not likely to happen, for several reasons.

Visual query builders are as old as SQL itself, starting with Query by Example (QBE)

in the 1970s. The idea has been implemented many times but it’s rarely used for non-

trivial queries. Programming in pictures looks cool but it’s easy to forget how great text is.

Text can be easily shared, modified, and version-controlled. In programming, a picture is

not worth a thousand words; it’s only worth 50.

The problem with visual programming is that you can’t have more than 50
visual primitives on the screen at the same time.

L. Peter Deutsch

The exact number of visual primitives is debatable, but the information density of

visual programming languages is definitely lower than text.

A long time ago, I was an intern at National Instruments. It was a great experience

to work at the company that created LabVIEW, arguably the best visual programming

language. The language is fun to use and well suited to test and measurement tasks. But

even the employees of that company would readily admit that visual programming is not

a panacea.

As an example of visual programming, Figure 1-1 shows a simple query against the

space schema.

Chapter 1 Understand relational databases

15

The preceding query finds all satellites that were launched on October 4, 1957. At a

first glance the image looks fine. But visual queries only look nice for simple examples.

Visual query builders do not scale, and the connection lines between tables will quickly

look like spaghetti. The following is the same query using Oracle SQL:

select

 norad_id,

 satellite.launch_id,

 launch_date

from satellite

Figure 1-1. A visual query in LibreOffice Base

Chapter 1 Understand relational databases

16

join launch

 on satellite.launch_id = launch.launch_id

where trunc(launch_date) = date '1957-10-04'

order by norad_id;

Although text is superior to images, Chapter 2 will explain why we still need to

program with an integrated development environment (IDE).

 Is SQL a Programming Language?
Yes.

Some programmers don’t consider SQL to be a “real” programming language. That

mistake can lead to a self-fulfilling prophecy. If SQL isn’t treated like a real programming

language, the code will look horrible, so developers don’t use it, which makes them think

it’s not a real programming language.

There’s no theoretical or practical reason to think that SQL is not a “real”

programming language. Defining exactly what a programming language is, and what it

can do, is theoretically important. But too often those tests are only applied to a straw

man version of Oracle SQL.

Original SQL is not Turing complete, which means the original version of SQL

cannot theoretically solve every problem that is solvable by a Turing machine. A Turing

machine is a simple abstract machine that can run forever. SQL doesn’t have an infinite

loop and therefore cannot run forever, so technically it’s not Turing complete. But

nobody has ever complained that their SQL didn’t take forever to run, so it’s a pointless

theoretical argument.

And Oracle SQL has many extensions that can make SQL act like a procedural

language. With recursive common table expressions (discussed in Chapter 7) and the

model clause (Chapter 19), Oracle SQL can run imperative code. Oracle SQL and PL/

SQL have been slowly merging for many years, and PL/SQL is a traditional imperative

programming language.

There is no theoretical or practical limit to what we can accomplish with Oracle SQL.

Chapter 1 Understand relational databases

17

 Different Database Types
This book is focused on Oracle SQL. For some people, that focus is too narrow; they may

use a different relational database, or a non-relational database. For some people, that

focus is too wide; they may only use an Oracle database in a specific context. This section

gives a brief overview of the entire database landscape and drills down into specific

Oracle database environments.

 Alternative Database Models
There are many relational database products and it would be foolish to try to quickly

compare them. The current version of Oracle, including the Grid Infrastructure

components, is a 6 gigabyte download. That’s larger than most operating systems. We

should be skeptical of shallow comparisons between relational database products, it’s

difficult to accurately summarize so much functionality. This book is about Oracle, so we

won’t go into those details here.

But it can be helpful to understand different database models. It’s difficult to break

databases into different categories, and there is considerable overlap between them.

 1. Key value: Uses associative arrays, or hashes

 2. Object: Uses objects, as in object-oriented programming

 3. Graph: Uses graphs, like nodes and edges between them (This is

perhaps the successor to the network model.)

 4. Document: Uses semi-structured files, like JSON or XML

 5. Hierarchical: Uses tree-like structures, like a file system or XML

document

 6. Online analytical processing (OLAP): Uses multidimensional

data

 7. In-Memory: Stores everything in memory for high performance

 8. Embedded: Small database that can be bundled within another

program

 9. Streaming: Reads and writes streams of data in real time

Chapter 1 Understand relational databases

18

 10. Column-Oriented: Stores data in columns instead of rows

 11. Distributed database: Stores data in multiple locations

 12. Blockchain: Decentralized, cryptographically secured list of

records

Those types of databases can be combined in multiple ways. Some can be grouped

into names like NoSQL, Big Data, NewSQL, etc.

There are many interesting technologies in that list. But new technologies and

products also attract a lot of myths and hype. Relational databases have been working

well for decades. Given the “No Silver Bullet” rule, we should be skeptical of claims of

huge advances in programming technologies.

I’m not saying don’t investigate or use those products. But if we’ve already paid for

Oracle, we should think carefully about moving to a different system. Oracle is much

more than a relational database. Oracle is a multi-model database and supports almost

every item on that list. Whenever a vendor claims that “Oracle cannot do X,” they are

wrong. (Unless they add the qualification “for less than a mountain of money.”)

Our databases won’t grow to the size of Facebook’s databases. Our programs may be

mission critical, but they don’t need to be as reliable as the software monitoring nuclear

reactors. Software used at the extreme edges of technology may not necessarily be

appropriate for the average system. A single, smart database is good enough for the vast

majority of business applications. Be careful not to over-engineer solutions.

There are times to consider an alternative, specialized database solution. But Oracle

is almost certainly capable of handling any database workload.

 Different Oracle Databases (OLTP vs. DW)
Oracle databases are traditionally divided into two categories: online transaction

processing (OLTP) and data warehouse (DW). Those two environments have different

goals and require different techniques.

OLTP systems manage transactions as part of a live application. Those systems

generally run a large number of fast queries, have precise application logic, have a

normalized schema, and require all the ACID properties. ACID stands for atomicity

(statements in a transaction either all succeed or all fail), consistency (data integrity is

never lost), isolation (concurrent sessions don’t corrupt each other), and durability (data

is never lost).

Chapter 1 Understand relational databases

19

Data warehouses allow for querying and analysis of large amounts of data, often

from multiple sources. Those systems generally run a small number of complex queries;

have lots of imprecise extract, transform, and load (ETL) code; have a denormalized

schema; and don’t need to be ACID compliant.

Oracle defaults to OLTP behavior. OLTP is a reasonable default; Oracle assumes that

we care equally about all our data. It’s up to us to tell Oracle what data we don’t care

about and when we’re willing to sacrifice ACID properties for better performance.

That reasonable default has led some people to mistakenly think that Oracle isn’t

designed for data warehousing. A quick glance at Oracle’s documentation, or the

following features, makes it obvious that Oracle has invested a lot of effort into data

warehousing. Data warehousing is not simply bolted on to the database, it’s been baked

into the database for decades. The following list names the Oracle technologies or

techniques geared toward data warehousing:

Star schemas, denormalization, direct path writes, materialized views, large temp/

undo/redo, multiple sets of tables for staging, partitioning, bitmap indexes, parallelism,

fewer integrity constraints, dimensions/hierarchies/attributes, materialized zone maps,

attribute clustering, and many different import and export tools.

There’s a large cultural difference between OLTP and data warehouses. OLTP

databases are run by application developers, lovingly crafted, well maintained, and are

fanatic about never losing data. Data warehouses are run by database programmers,

have lots of ugly and repetitive code, accumulate lots of junk data, don’t care about

losing data (it can be re-loaded), and are constantly worried about performance. When

we move from one database style to another, we need to adjust our attitude accordingly.

This section only scratches the surface of the differences. There are many books

dedicated to data warehousing, such as Oracle’s 620-page Data Warehousing Guide.

However, a lot of the features in that guide are just cool query techniques and can apply

to any Oracle database. In practice, a lot of systems have some combination of both

OLTP and data warehouse.

 Key Concepts
ANSI join syntax and inline views are the keys to writing great SQL statements. The

ANSI join syntax uses the JOIN keyword, instead of a comma-separated list of tables.

Inline views are nested subqueries in the FROM clause.

Chapter 1 Understand relational databases

20

That’s the most important lesson in this book, but it may be a difficult lesson to

learn. SQL developers who spent years listing tables in a comma-separated lists in the

FROM clause will be resistant to changing. Unlearning language patterns takes time,

which is why the ideas are briefly introduced here. ANSI joins and inline views are used

throughout this book and are fully discussed in Chapters 6 and 7.

Before that detailed discussion is possible, it’s critical that we have a firm grasp of a

two key SQL concepts – nulls and joins.

Oracle SQL is a vast language. It has thousands of keywords and thousands of

public objects, such as packages, procedures, functions, views, etc. No matter how

many of those features we memorize, we will not truly understand Oracle SQL until we

understand nulls and joins.

This is the only part of the book that you must completely understand. Do not

continue until these ideas click in your mind.

 NULL
Nulls are weird. The three-valued logic takes a while to get used to. Even defining null is

a bit tricky. When I see a null, I think “the absence of a value.” That description isn’t 100%

accurate. The important thing is that you have a quick mental definition that works for you.

SQL null is different than null in other languages. Null does not default to 0, or an

empty string, or a specific date. Sometimes we don’t really know what a null means,

and sometimes we don’t even know why it’s there. That’s OK. We shouldn’t expect to

understand all of our data perfectly.

Null is not equal to null. Null is also not not equal to null. That’s counter-intuitive at

first but it will make sense after a while.

For example, let’s say we want to compare launch apogees. The apogee is the furthest

distance from Earth and is a good way to quickly categorize rocket launches. A launch

over 100 kilometers is generally considered to be in space.

First, let’s find all launches without a known apogee and then find all launches with a

known apogee.

SQL> select count(*) from launch where apogee = null;

 COUNT(*)

 0

Chapter 1 Understand relational databases

21

SQL> select count(*) from launch where apogee <> null;

 COUNT(*)

 0

Neither query worked because the comparisons = NULL and <> NULL will never

return any results. Comparing directly with null will always return unknown, which then

gets translated to false.

The correct way to query for the presence or absence of null is with the expressions

IS NULL and IS NOT NULL:

SQL> select count(*) from launch where apogee is null;

 COUNT(*)

 5276

SQL> select count(*) from launch where apogee is not null;

 COUNT(*)

 65259

There’s one more way that null expressions frequently confuse people. Never use a

NOT IN expressions if the in-list or subquery can return null.

For example, let’s find all launches where the launch is not associated with a satellite.

A lot of rocket launches don’t have a payload, they’re just testing the rockets themselves.

SQL> select count(*)

 2 from launch

 3 where launch_id not in

 4 (

 5 select launch_id

 6 from satellite

 7);

Chapter 1 Understand relational databases

22

 COUNT(*)

 0

That query returns no rows because there are satellites with a null LAUNCH_ID. That

sounds impossible at first – how can there be a satellite that wasn’t launched into orbit?

Turns out there’s a satellite for “Unknown Oko debris.” (Oko were the Soviet Union’s

missile defense satellites.) It’s not that the satellite wasn’t launched into space, we just

don’t know which launch it was a part of.

A total of 99.998% of all satellites have a known launch. But it only takes a single null

to ruin all the results. Be careful when you assume a column is always set, and use NOT

NULL constraints whenever possible.

The next section will show a better way to get the results, with a join.

 JOIN
Joins are the central operation of the Oracle database. Without joins, a database is just a

glorified text file. Everything done in a database should be designed around joining data.

We must be completely comfortable with the most popular join types. We must be able

to read and write joins without even thinking about them.

This section provides visualizations, descriptions, and sample code to help us

understand and visualize joins. We don’t all need to visualize joins in the same way.

As long as we all have a convenient mental model of a join, that’s good enough.

 Join Visualization

The basic join types are shown in Figure 1-2, using two different types of visualizations –

a join diagram and a Venn diagram. Most people think about joins as Venn diagrams;

some people are more comfortable thinking about them as join diagrams.9 As long as

one of the visualizations helps, it doesn’t matter which one we use.

9 The JOOQ blog makes a good argument that using Venn diagrams here is just plain
wrong and that Venn diagrams can only accurately represent relational operations
such as union, intersection, and difference. They may be right, but at the end of
the day, whatever works for you is fine. https://blog.jooq.org/2016/07/05/
say-no-to-venn-diagrams-when-explaining-joins/.

Chapter 1 Understand relational databases

https://blog.jooq.org/2016/07/05/say-no-to-venn-diagrams-when-explaining-joins/
https://blog.jooq.org/2016/07/05/say-no-to-venn-diagrams-when-explaining-joins/

23

Figure 1-2. Visualizing joins with join diagrams and Venn diagrams

Chapter 1 Understand relational databases

24

Only the basic joins are visualized in Figure 1-2. There are other types of joins, many

of which defy any simple visualization. Other join types are discussed in Chapter 7. For

now, it is enough to have a solid understanding of the main join types.

Note that each diagram uses shading in a different way. In the join diagrams on

the left, shading is used to represent different values. In the Venn diagram on the right,

shading is used to represent overlapping values.

In case the shapes and colors of Figure 1-2 don’t make sense, Figure 1-3 shows

a slightly different version for the inner join. This version lists the values. Imagine

we’re joining by the column LAUNCH_ID, which is in both tables. And imagine that the

table LAUNCH only has the values 1 and 2 and the table SATELLITE only has the values

2 and 3.

Spend some time looking at Figures 1-2 and 1-3 until the diagrams make sense. If my

diagrams don’t work for you, Google “join diagram” until you find something that makes

sense.

 Inner Join

The most common type of join is an inner join. This first set of sample queries returns

all launches and satellites where they share the same LAUNCH_ID. This does not return

all launches, because many launches don’t have a payload. And it does not return all

satellites, because of satellite debris with an unknown launch. Some rows from the

LAUNCH table will be returned multiple times, because a single launch may have multiple

satellites.

Figure 1-3. Visualizing joins with join diagrams and Venn diagrams, drilling
down into INNER JOIN and showing values

Chapter 1 Understand relational databases

25

There are at least three common ways to perform inner joins. First, using the explicit

keywords INNER JOIN:

select *

from launch

inner join satellite

 on launch.launch_id = satellite.launch_id;

Inner join is the default, so the keyword INNER is not necessary:

select *

from launch

join satellite

 on launch.launch_id = satellite.launch_id;

The preceding queries use what is called the “ANSI join syntax,” after the join syntax

introduced by the ANSI SQL standard. Alternatively, the query can be built with what is

sometimes called the “Cartesian product” approach. These types of joins existed before

the SQL standard was created. Tables are listed in a comma-separated list and the joins

are done in the WHERE clause. This approach is strongly discouraged, as discussed in

Chapter 7:

select *

from launch, satellite

where launch.launch_id = satellite.launch_id;

 Left and Right Outer Joins

The next most common types of joins are left outer join and right outer join. These

joins allow us to retrieve all the rows from one table, along with any rows from another

table that match the condition. Left and right outer joins are the same operation, only

mirrored. In practice, most people only use the left outer join. The table that drives the

joins is listed first and then left-joined to optional tables.

For example, to retrieve all rocket launches, with their relevant satellites, if any:

select *

from launch

left outer join satellite

 on launch.launch_id = satellite.launch_id;

Chapter 1 Understand relational databases

26

Since a left join is always an outer join, the outer keyword is not necessary:

select *

from launch

left join satellite

 on launch.launch_id = satellite.launch_id;

Alternatively, the query can be built with the Oracle (+) operator. The (+) operator

means “this is the optional part of the predicate.” This old-fashioned syntax is strongly

discouraged. But we must be familiar with it because people still use it, and in a few rare

cases, Oracle requires it. This syntax will be discussed more in Chapter 7.

select *

from launch, satellite

where launch.launch_id = satellite.launch_id(+);

Changing the query from a left outer join to a right outer join is trivial. Simply change

the keyword LEFT to RIGHT, or place the (+) on the other side of the condition. Changing

from left to right will make the queries return all satellites, even if they do not have a

matching LAUNCH_ID. This will include the “unknown debris” satellite. Right join queries

are simple variations on the preceding left joins and are not shown.

(If it annoys you that the data set contains debris, you’re not alone. In the worst

case, this is the beginning of what’s called the Kessler syndrome. If irresponsible satellite

operators don’t properly dispose of their satellites or if they blow them up with anti-

satellite missiles, the debris may cascade and increase the chance of more collisions.

Eventually some orbits may become unusable.)

 Full Outer Join

Full outer join returns all rows from both tables. For example, these three queries return

all launches, even those without satellites, and all satellites, even those without launches.

When the rows share the same LAUNCH_ID, they are listed together. Similar to the other

join types, the outer keyword is optional and is not included in the second query. Note

that the third query is invalid – the old-fashioned (+) syntax does not work here. We

must use the modern ANSI join syntax to get a full outer join.

Chapter 1 Understand relational databases

27

--Full outer join with optional "outer" keyword.

select *

from launch

full outer join satellite

 on launch.launch_id = satellite.launch_id;

--Without optional "outer" keyword.

select *

from launch

full join satellite

 on launch.launch_id = satellite.launch_id;

--This does not work, it raises the exception:

--ORA-01468: a predicate may reference only one outer-joined table

select *

from launch, satellite

where launch.launch_id(+) = satellite.launch_id(+);

 Cross Join

Cross joins, also called cross products or Cartesian products, return every possible

combination of the two tables. These joins usually only happen by accident. There’s no

reason to use a cross join between launches and satellites. There are 70,535 launches

and 43,113 satellites. The following cross join queries will run for a long time and will

eventually return three billion rows.

--ANSI join syntax:

select *

from launch

cross join satellite;

--Old-fashioned syntax:

select *

from launch, satellite;

Caution stop and re-read this section if any of this doesn’t make sense. You will
never reach your full potential with oracle sQl until you are comfortable with joins.

Chapter 1 Understand relational databases

28

 Summary
After this brief introduction to the relational model, the history of Oracle and SQL, and a

review of two key concepts, we’re ready to create our development environment. While

many of the details of the relational model don’t matter, there are a few rules we should

always remember while we’re developing – never store lists of values in a column,

and try to avoid duplicating data. SQL is the primary language for relational data, and

everything we create in a database should be easy to use in SQL. There are many kinds

of databases, and even different ways of using an Oracle database; not all of the features

and styles we discuss will suit your environment. And a firm understanding of NULL and

joins is crucial before moving on to creating development processes.

Chapter 1 Understand relational databases

29
© Jon Heller 2019
J. Heller, Pro Oracle SQL Development, https://doi.org/10.1007/978-1-4842-4517-0_2

CHAPTER 2

Create an Efficient
Database Development
Process
Most Oracle database development environments are set up like fragile china shops.

There’s an intricate structure that must be maintained at all costs, and the smallest

change can break things and stop everyone from working. Nobody knows exactly how

the database got to be the way it is, and everybody is worried they won’t know how to fix

it when it breaks. Typical Oracle database development processes are woefully behind

industry norms.

This chapter shows a better way to work. There are simple processes that can help us

create, scale, learn, and experiment, without interrupting anyone else.

This chapter does not discuss the entire software development life cycle, or agile vs

waterfall. Without building the right foundational processes, it’s meaningless to even talk

about adapting agile or some other high-level process. This chapter focuses on low-level

database concepts: creating the databases, then creating the objects, and then managing

those objects.

 Shared Database vs. Private Database
There are two main approaches to Oracle database development The most common

approach is to create a shared database server for development. Multiple developers

do most of their work on the same database, possibly in the same schema. The less

common approach is to create a private database for each developer. I strongly advocate

private database development for most projects.

30

This chapter does not discuss the shared database approach in detail. Shared

database development is the default choice for most Oracle projects, and setting up

those environments is a topic for database administrators (DBAs).

There are times when shared database development is a good choice. And there

are technologies we can use to improve shared database development, such as

the 12.1 multitenant option, or faster provisioning with cloud technologies. But no

technology can erase the sociological difference between the two models. Shared

database development is ultimately controlled by administrators, and private database

development is ultimately controlled by developers.

Believe it or not – and I know that most of you do not – private database development

works wonderfully. For SQL developers who have worked on shared systems for decades,

it’s hard to imagine simply getting rid of all that infrastructure and administration. A new

development style is something we have to see to believe. My goal is to at least expose

you to new ideas and convince you to keep an open mind.

It can be scary at first to rethink the way we deal with environmental differences,

security, testing, sample data, licensing, performance, integrating changes, and

deploying changes. Most of those concerns will be addressed later in this chapter. And

you can rest assured that many successful organizations and projects have solved these

issues before.

We still probably need to keep some shared servers around, for different kinds of

testing. But I’ve worked on many projects where over 90% of the database development

and testing was done on Oracle databases installed on laptops.

There are many things to consider when we make the important decision on

how to set up our development process. We have to make several trade-offs. The rest

of this chapter only discusses the private database development model, because I

believe the trade-offs can be summarized as follows: it’s better to have full control

over an imperfect copy of production than to have almost no control over a perfect

copy of production.

 Create an Infinite Number of Databases
The first step in building an Oracle database solution is to create a system where

everyone has an unlimited number of private databases, as well as unlimited privileges

on their databases.

Chapter 2 Create an effiCient Database Development proCess

31

 Advantages of Private Databases
Few Oracle shops use private databases, but it is not a radical idea. Java programmers

don’t share a compiler and don’t worry that someone else is compiling a package at

the same time. C programmers aren’t limited to building only one executable at a time

and don’t worry about over-writing someone else’s work. JavaScript programmers

don’t have to ask someone’s permission to use a function that is a default part of

the language. Application developers almost always have access to the near-infinite

capabilities of their programming languages. Why shouldn’t Oracle developers have

the same power?

There are many ways to give every developer multiple, private database instances.

The trendy way to do this is with containers, the cloud, or some combination of the

two. But private databases do not require any fancy new technology. The simplest way

to achieve our goal is to install Oracle on our personal computers (PCs). The choice

isn’t between accessible cloud computing and an unapproachable mainframe; the PC

revolution is still a fine choice.

There are many advantages to developing on private databases instead of a single,

shared server.

 1. Create, learn, and experiment: Innovation does not ask

permission; it is spontaneous, fleeting, and disruptive. On a

shared server, we can’t modify certain objects, or we need to ask

someone’s permission, or we need to warn the rest of the team.

But we don’t want to be embarrassed by our potentially stupid

ideas. And we can’t have good ideas unless we’re allowed to

have stupid ideas first. Developers must be allowed complete

freedom and privacy to thrive. Even the slightest barrier to entry

can prevent innovation and squash that first spark of an idea.

This is especially true for new developers who don’t yet have the

confidence to try new things.

 2. Work in parallel: With an unlimited number of databases, we can

have an unlimited number of versions. Even for internal projects

with only one customer, it’s important to support multiple

versions. We should never limit ourselves to only being able to

develop a small number of versions at the same time.

Chapter 2 Create an effiCient Database Development proCess

32

 3. Standard configuration: If it’s not automated, it’s not

standardized. Shared servers with artisanal configuration will

inevitably drift, due to the different people using and changing

them.

 4. Data: Free yourself from large data sets. Developing against large

production data sets is used as a crutch to make up for a lack

of meaningful test data. Artificially created test data is smaller,

more secure, and more useful than production data. There are

certainly times when we need to test against large data sets, but

most of our development is faster with smaller test data and

smaller feedback loops. This topic is discussed in more detail in

Chapter 3.

 5. Security: If it’s not automated, it’s not secure. Manual audits and

scans are a hassle. Audits are so difficult that we subconsciously

make excuses for differences and spend a long time between

audits. Security parameters, patches, and hardening programs

must be automated to maintain security. Private instances can be

thoroughly locked down, making them more secure than shared

environments. For example, in the listener.ora file, set HOST =

LOCALHOST and no external users can connect to the database.

If nothing is shared and there is no sensitive data, there are no

immediate privilege concerns. We should all have DBA access on

our private databases. Developers need at least one place to be

able to test security features, such as granting roles and creating

users. Elevated access on private databases isn’t an excuse to

ignore security. Elevated access gives developers the ability and

responsibility to practice security early and often. Developers

must worry about security and cannot rely on administrators to

harden things later.

 6. Performance: Personal computers can often outperform

development servers. Shared servers are often old and optimized

for reliability and durability instead of performance. I’ve seen

plenty of times when an insanely expensive server was much

slower than a surprisingly cheap laptop. For a rough comparison

Chapter 2 Create an effiCient Database Development proCess

33

of CPU performance, look at the SPEC CPU benchmarks.1 I/O is

harder to measure, but we can quickly create tests for things like

the time to perform a full table scan. (Testing is discussed more

in Chapter 3.) Even if the shared server is much faster than our

laptops, we have to share the server with others. For performance

testing in a lower environment, consistency is just as important as

mirroring the production environment. It’s easier to isolate tests

on our personal computer.

 7. Licensing: Oracle licenses are complex and expensive, but only

for shared servers. Many of Oracle’s developer tools are free,

and virtually every product can be downloaded for free from

http://download.oracle.com. Spend a few minutes to read the

OTN License Agreement. Without paying any money, we can

use Oracle databases for “developing, testing, prototyping, and

demonstrating” our applications. If that license doesn’t work,

then we can buy Personal Edition for only a few hundred bucks.

Personal Edition has almost all the same features as Enterprise

Edition and even comes with Oracle Support. The biggest

difference is that Personal Edition is only for one user on one

personal computer. Personal Edition doesn’t include options

like Real Application Clusters (RAC), but we don’t need RAC for

most of our development anyway. Oracle licensing can be a real

nightmare, and we need to be careful, but sometimes we can

simply go to their website and buy the software we need.

 8. Initial setup is easier: Setting up a large number of private

databases is easier than setting up a small number of servers.

This happens because creating a large number of databases

forces us to standardize and automate. And private databases

make the process more democratic; everyone is involved, has the

same privileges, and can work together to incrementally improve

1 The numbers for the CPU integer rate are a good way of comparing overall CPU performance
for database work. Make sure to use the rate metrics, not the speed metrics, to measure
multiprocessing throughput instead of single-process speed. No benchmark is perfect, but the
SPEC numbers are much better than price, model number, frequency, or number of CPUs, cores,
or threads. All the benchmark data is published here: http://spec.org/benchmarks.html#cpu.

Chapter 2 Create an effiCient Database Development proCess

http://download.oracle.com
http://spec.org/benchmarks.html#cpu

34

the processes. Even if our organization truly only needs a single

database server, keep in mind that this factor is a relatively small

amount of time compared to the other reasons. Don’t let the initial

database setup time force us into a bad development process

forever.

Moving from shared databases to private databases gives us a huge boost in

productivity. Distributed development even makes us happier – without artificially

scarce resources there will be no yelling or finger-pointing when someone blocks a

resource. There’s no need for a developer tragedy of the commons; everyone can have a

near-infinite supply of Oracle databases.

There are a few cases where shared databases are required for development.

Typically the reasons are historical; once a project is headed down the shared

database or private database path, it’s hard to change course. And some complex

software and resources cannot be easily redeployed. But don’t use deficiencies in

tools as an excuse to do things the old-fashioned way. It’s perfectly reasonable to say

“if we can’t automate this tool, the tool is not worth using anymore.” The information

technology industry is always moving toward more automation; infrastructure is

not like an untouchable mainframe, infrastructure should be code that can be easily

changed.

 How to Implement Private Databases
Once we decide to create private databases, how exactly is it done? The database

software part is easy – let everyone install Enterprise or Personal Edition on their laptop

or desktop. Make sure everyone is using a version of Oracle as powerful as the version

used in production. Note that we should almost never use Oracle Express Edition. That

version has many restrictions, is unsupported, is missing many important features, and

had a 6- and 7-year gap between releases.

Installing a local instance of Oracle is simple and only requires a few instructions.

Administering an Oracle database can be difficult, but it’s much easier when we don’t

have to worry about reliability and durability. Database administrators may have to stay

up all night to make shared servers work. Life is much easier for our private development

databases; if we can’t fix the database after a few minutes, we can reinstall it.

Chapter 2 Create an effiCient Database Development proCess

35

A lot of organizations are now putting databases on virtual machine images,

containers, in the cloud, etc. Oracle even has pre-built developer virtual machines and is

now starting to integrate with container technology. Those approaches have advantages

but also require more work upfront. There are many ways to use those technologies and

they are beyond the scope of this book. But remember that we don’t need to implement

one of those technologies to be agile; a personal computer with “plain old on-premise

software” is all we need.

It might be difficult to create a private database that perfectly matches the

production environment. For example, we don’t want to have to install things Real

Application Clusters (RAC) or Automatic Storage Management (ASM) on our laptops.

And our laptops likely won’t even have the same operating system as production.

Luckily, for 99% of Oracle development, those underlying technologies don’t matter.

RAC, ASM, the operating system, and many other components are invisible to the

average user. Oracle is a highly portable system and has abstracted much of the

underlying architecture. Our private databases won’t be quite as stable without RAC,

but the difference between 99.9% uptime and 99.99% uptime doesn’t matter for

development.

When it is impossible to install our programs on a private database, there are still

ways to improve the agility of our environment. It may be possible to install the program

on multiple schemas and give everyone a separate schema. Or perhaps we can use

Oracle’s multitenant option to create a somewhat larger number of databases. Those

options are not nearly as good as creating private databases, but it’s better than a single,

shared database.

Even when our main program is only on a shared database, there are still benefits to

giving everyone a private database. It’s always helpful to have a sandbox to play around

in. A place where we don’t have to worry about breaking anything. A lot of testing and

learning can be done on a private database, even if the database is empty.

I’ve worked at places with shared databases, and I’ve worked at places with private

databases. It’s always been a night-and-day difference. Organizations with shared

databases are full of missed deadlines, ugly code, and a developer class system that

breeds finger-pointing and fear. Organizations with an unlimited number of databases

have better products, cleaner code, and an egalitarian environment that makes people

happy and helps them reach their full potential.

This section only covered the core database software. That’s the easy part. The hard

part is recreating custom schemas.

Chapter 2 Create an effiCient Database Development proCess

36

 Rapidly Drop and Recreate Schemas
Deploying database changes is easy, if we deploy frequently. There are many fancy ways

to create and run database scripts, but good old-fashioned text files and SQL*Plus are the

best tools.

 Why Deploy Often?
Database deployments are full of errors, uncertainty, and performance problems.

Databases may be more difficult to deploy than traditional applications, since databases

have more persistent data. But we can’t blame our deployment problems solely on

databases being difficult. Deployment problems will happen to any process that is rarely

used and treated like a second-class citizen.

Practice makes perfect. If deployments are run by many people, many times a

day, they will become easy and painless. But easy deployments are only possible if

everyone works on private databases, as discussed in the previous section. As soon

as we are done with our work, we should drop and recreate the schemas to test the

build scripts. (Or, more frequently nowadays, that process is done automatically as

part of a commit.) Dropping and recreating schemas, even for complicated database

programs, can be done in less than a minute. Constantly recreating schemas lets us

find failures immediately. Mistakes can be fixed instantly, since the code is still fresh

in our minds.

Everyone on the team should be involved with creating build scripts. Deployments

are a natural part of any database change. The process of building a deployment should

not be farmed out to a separate team. In some organizations the senior developers look

down upon mere deployments and assign that drudge work to the junior developers. But

we should take pride in our work, so we should take pride in the way it is packaged and

delivered and see it through to the end. Once an efficient system is put in place, creating

and testing deployment scripts will be easy anyway.

It may be necessary to create a culture that strongly discourages breaking the build.

Breaking the build is the ultimate sign of disrespect in the programming world; other

people can’t do their job because one person was too lazy to run a simple test. We

don’t need to publically shame people, but we do need to make it clear that creating

roadblocks for other people is not acceptable. This can be a hard lesson for people

accustomed to shared database development. Those developers come from a world

Chapter 2 Create an effiCient Database Development proCess

37

where breaking code is inevitable, and they may not understand that breaking the build

is no longer acceptable. (Alternatively, we can avoid this whole situation by configuring

our repository to automatically check builds before a commit.)

 How to Deploy Often?
Creating and maintaining database deployment scripts is not magic. It does not even

require twenty-first-century technologies. Text files and SQL*Plus are almost always

good enough. But the most important ingredient is discipline.

There are many products that claim to automate database deployments. But this

is one of those areas where we should ignore automated tools and build it ourselves,

using the simple programs that Oracle already provides. Many automated deployment

programs are either database agnostic or assume a shared server model.

There’s nothing inherently wrong with being database agnostic. Clearly, many

frameworks and programs benefit from working with a large number of databases. But

managing and deploying schema objects requires an intimate knowledge of a database.

Most deployment automation tools focus on quantity over quality. Those tools don’t

fully understand Oracle SQL and may force us into using a simpler “standard SQL,”

which makes it difficult to take advantage of Oracle’s unique capabilities. If we paid for

Oracle, we should get to use all of its features.

Many database deployment tools assume the obsolete shared database model. Do

not be fooled; there is no way to be agile if everybody shares the same development

server. Slightly improving our shared database deployments is not good enough, don’t

settle for less. Technologies like cloning, data pump, export/import, flashback database,

transportable tablespaces, and replication are clearly useful. But those technologies

should not be at the heart of our deployment process.

This leaves us with SQL*Plus. SQL*Plus is showing its age in many ways. SQL*Plus is

a bad choice for tasks like programming and ad hoc querying, as discussed in Chapter 5.

But SQL*Plus is the lingua franca of Oracle schema installations. It’s not a full shell

language, it’s not an integrated development environment, and it’s not particularly good

at ad hoc querying. But SQL*Plus hits a sweet spot between those tasks. It’s free, easy to

configure, already installed, and platform independent.

Chapter 2 Create an effiCient Database Development proCess

38

 SQL*Plus Installation Scripts
The following is a high-level outline of a database installation script.

 1. Comments: purpose, example, prerequisites

 2. SQL*Plus settings and start message

 3. Check prerequisites

 4. Drop old schemas

 5. Call install script for each schema:

 a. Start message

 b. Create user

 c. Call one file per object type

 d. End message

 6. Grant to roles

 7. Validate the schemas and print end message

Don’t try to do everything in one file. Treat the installation file like we would any

program, and create lots of small, re-usable parts. The top-level install script should be

relatively small and should be mostly comments and calls to other scripts, such as

 @schema1/packages/install_package_specs.sql.

There are a lot of tricky details that will take time to get right. The scripts must grow

along with our program. Creating installation scripts is not a task we can leave until the

end of the project.

Eventually you’ll need to read through the SQL*Plus User’s Guide and Reference.

I won’t try to repeat the whole user guide here, but the following paragraphs describe the

important parts.

 Comments

Comments at the beginning of the script are often overlooked. It’s important to add

lots of details about the program and how to use it. As an example, look at many of the

readme.md files on GitHub. The most successful projects almost always have meaningful

documentation to help people quickly get started.

Chapter 2 Create an effiCient Database Development proCess

39

 SQL*Plus Settings and Messages

There are lots of SQL*Plus settings and it’s important to control exactly how the output

looks. The installation script should show enough details to help us troubleshoot

mistakes, but not so many details that it’s difficult to find the real problem. Common

settings are SET VERIFY ON|OFF (show the substitution variable changes), SET FEEDBACK

ON|OFF (show messages like “x rows created”), SET DEFINE ON|OFF (enable substitution

variables), SET SERVEROUTPUT ON|OFF (show DBMS_OUTPUT), PROMPT TEXT (display a

message), and DEFINE VARIABLE = &1 (set variables, possibly to input parameters

through &NUMBER). You don’t necessarily need to read the entire SQL*Plus manual, but

you should at least scan through the commands in the table of contents.

Two important and under-used SQL*Plus settings are WHENEVER SQLERROR EXIT

FAILURE and WHENEVER OSERROR EXIT FAILURE. Do not sweep installation errors under

the rug. It’s safer to immediately stop the entire installation as soon as anything goes

wrong instead of trying to troubleshoot a half-broken installation days later. When we

make a mistake, we should at least try to make it obvious, as discussed in Chapter 11.

The preceding script outline contains lots of messages. The messages can be

generated from PROMPT, DBMS_OUTPUT.PUT_LINE, or a SELECT statement. It can be difficult

to tell exactly where a script fails, so those messages are important for troubleshooting.

It may also help to use SET ERRORLOGGING ON to catch errors.

 Check Prerequisites

Checking prerequisites may be necessary for complex projects. We may need to limit

the program to specific platforms or editions, check for sufficient tablespace, etc.

Whenever the program hits an error because someone’s Oracle database was configured

incorrectly, add a check for that problem in the prerequisites section.

 Drop Old Schemas

It may look scary at first, but it’s important to frequently drop the schemas. To be safe,

we may want to put the drop commands in a separate script with a scary file name, to

ensure it’s never run on the wrong environment. During development our schemas get

cluttered with unnecessary junk. And sometimes we may add an object to our schema

but forget to add the object to the scripts. It’s better to clean up the schemas and catch

missing objects as soon as possible. Dropping and recreating schemas will force us to

become disciplined and build cleaner code.

Chapter 2 Create an effiCient Database Development proCess

40

 Scripts for Object Types

Each schema’s install script is where the real work takes place. It’s important to have

separate install scripts for each object type. Some objects, like tables, can be grouped

together in a single file. Other objects, like packages, procedures, and functions, should

have a separate file for each object. Those separate files allow our code editors to easily

read and write to the file during development. Splitting the install script by object

types also allows us to avoid most dependency issues. For example, install_schema1_

tables.sql should run before install_schema1_package_specs.sql. Separating the

scripts also allows them to be called in different contexts. For example, the packages,

procedures, and functions will be called by both the installation and the patch scripts.

 Grant to Roles

Build a script to grant to roles from the beginning of the project, even if we don’t think

we’ll need it. Roles are one of those things we always forget, especially when we drop and

recreate an object. Build a single script that always grants everything to the appropriate

roles and call the script during every installation and every patch, just in case. There’s

a good chance that every project will eventually need a read or read–write role for

important schemas.

 Validate the Schemas

Always finish with a small script to validate the schemas. Even if WHENEVER SQLERROR

EXIT FAILURE is set, there are still subtle ways for errors to go unnoticed. The validation

script should at least check for invalid objects and raise an exception if anything is

found. Objects may become invalid during the installation, but a call to DBMS_UTILITY.

COMPILE_SCHEMA should fix everything at the end. The script may also check other status

tables, or possibly the table SPERRORLOG, if SQL*Plus error logging was enabled.

 SQL*Plus Patch Scripts
Our program may work great on our private databases, but eventually the code has to

move to higher, shared environments. It’s easy to drop and recreate our schemas, but we

obviously cannot do that on environments like production. We need scripts to upgrade

the schema to include our changes.

Chapter 2 Create an effiCient Database Development proCess

41

With private database development, we can’t have only one developer responsible

for creating the deployment scripts. Every developer is responsible for integrating their

changes into the installation and upgrade scripts. Luckily, much of the patch script work

is already done by the installation scripts. Designing patch scripts requires some difficult

decisions, but it’s important to not take any shortcuts.

The installation scripts already take care of things like SQL*Plus settings, checking for

errors, and installing code objects. If we separated the installation scripts by object type,

half of the work is already done. Installing code objects, such as packages, procedures,

and functions, can be done the same way whether we’re installing or patching. Our

global patch template can simply call those pre-built code scripts. It’s easier to recompile

everything, every time, instead of trying to find specific code changes.

The tricky part is handling changes to persistent objects, such as tables. Once

again, it is better to do this step by hand than to buy a tool and try to automate

the process. The reason for manually building change scripts is discussed in the

next section. For now, there is still one more decision left – how are those changes

backported into the installation scripts? Do we constantly update the installation

scripts, or do we simply run the original installation scripts and then call the patch

scripts at the end?

Creating patch scripts is one of the few areas where it is beneficial to repeat ourselves

and duplicate the code. There will be many times when we’ll look at the installation

scripts, instead of a live database, to see what the schema looks like. The installation

scripts are just text files and are easy to share. There may be switches in the scripts

that install different versions of objects, depending on things like the database version

or edition. The tables on our database may not look exactly the same as the tables on

someone else’s database, and a clean installation script will explain how that difference

happened.

Patch scripts full of ALTER commands are ugly and difficult to follow. To see

how a table is built, we shouldn’t have to find the original CREATE TABLE statement,

then look through the patch scripts, and then put together a history of ALTER TABLE

statements. When we build something, we should take the extra time to make our

scripts more readable for future developers. When we create the patch script, we

should also add those changes to the installation script. It’s annoying, and there’s

a chance of making a mistake when the code is duplicated, but in this case the

duplication is worth the risk.

Chapter 2 Create an effiCient Database Development proCess

42

 Control and Integrate Schemas with
Version- Controlled Text Files
Never use a database for version control. This book is about promoting practical

solutions with Oracle SQL. Although it’s fun to push Oracle to its limits, and write

esoteric queries to solve weird problems, there are some things that should not be done

in a database. Version control should be done with manually created text files.

 Single Source of Truth
Understanding why we need version-controlled text files begins with a difficult question:

where is the ideal version of our schema? There are many possible answers, such as on a

production database, on our private database, in our head, on a floppy disk in a drawer

somewhere, etc. This is not merely a theoretical question; every program needs a single

source of truth. A single place to find and maintain the real version of the program.

(Ironically, the phrase “single source of truth” may have originated with databases, for

database normalization. But now the phrase applies better to version control, which

shouldn’t be done in a database.)

The single source of truth must be convenient and accessible by everyone. It must

allow us to store, manipulate, compare, fork, and track the history of everything. While

databases are good at most of those tasks, databases don’t offer quite enough flexibility

and don’t help at all with tracking changes. This problem was solved a long time ago, and

the solution is text files stored in version control software. The specific version control

program doesn’t matter. Whether we use Git, Subversion, or something else, any of

those choices are significantly better than using a database. The ability to branch, merge,

and resolve conflicts is a lot better than simply writing over someone else’s work. And

modern version control programs form the basis of incredibly useful platforms, such as

GitHub.

Unfortunately, a lot of Oracle shops only use version control software as a glorified

backup.

isn’t just a place to store an “official copy” or to store something before it’s promoted

to another environment. Version control is where our programs need to live. If we could

wave a magic wand and make all of our development databases disappear, it should only

set us back a few hours. Recovery should be easy – get the latest version-controlled files

and run the installation script.

Chapter 2 Create an effiCient Database Development proCess

43

 Load Objects from the Repository and File System
When we begin developing, we should not start by loading objects from a shared

database. Our first step should be to pull files from the repository onto our file system.

That operation may lead to conflicts if someone else has changed the same files we’re

working on. Conflicts are annoying, especially if you’re new to using version control.

But keep in mind that conflict warnings are doing us a huge favor by telling us when

multiple people are changing the same thing at the same time. Merging code in

version control software is much better than developers over-writing each other on a

shared database.

After we have the latest files, we should load the objects from the file system, not the

database. Modern IDEs, like PL/SQL Developer or Oracle SQL Developer, make it trivial

to work from the file system. In fact, working from the file system is even easier than

working directly from the database objects, because we can carefully arrange the files

and folders.

For example, when building the data set and examples for this book, everything is

stored on my hard drive and eventually committed to the GitHub repository. Figure 2-1

shows what this looks like when I’m working in PL/SQL Developer. The menu has the

same file structure as the GitHub repository, and the tabs are color-coded to quickly

identify which files have not been saved to the file system and which objects have not

been compiled since the last change.

Chapter 2 Create an effiCient Database Development proCess

44

Most IDEs also have version control interfaces that let us directly work with the

repository. But it’s easier to use the file system and the default version control client.

There are also many useful programs that integrate version control with the operating

system, such as TortoiseGit or TortoiseSVN.

 Create and Save Changes Manually
Whichever approach we use to interact with version-controlled files, we should

manually commit and verify the files. When we push our changes, we might once again

find version control conflicts, if other people have changed the same files as us. All of our

Figure 2-1. Viewing the database objects through a version-controlled file
system

Chapter 2 Create an effiCient Database Development proCess

45

work is integrated through the version control system, not a shared database. Relying

more on version control adds a step to our workflow, but the extra step is worth the cost

because it enables parallel development.

There are products that attempt to look at our database and guess the changes, but

we should avoid those products. Automation is great for applying changes. But when

it comes to making the changes, they should be lovingly handcrafted. We can’t trust a

program to tell us how to program; that’s our job.

Creating automatic change sets is extremely difficult. Even Oracle’s solution,

DBMS_METADATA_DIFF, doesn’t do the job well enough. That package can create a good

starting point, but it will inevitably produce a lot of ugly junk code. Those programs don’t

understand our style and don’t care if the results look good. Those automation programs

don’t understand that objects must also look good in the version-controlled text files.

And of course those programs are usually not free. For example, DBMS_METADATA_DIFF

requires a license for the OEM Change Management option.

Most importantly, those automated programs don’t know what we don’t care about.

Those programs produce a lot of junk that drowns out the useful features and makes it

impossible to meaningfully compare files.

For example, the following code creates a simple table and then asks Oracle to

generate the Data Definition Language (DDL) for it:

create table test1 as select 1 a from dual;

select dbms_metadata.get_ddl('TABLE', 'TEST1') from dual;

We might expect Oracle’s output to be pretty similar to the original command.

Instead, we get the following horrendous output:

 CREATE TABLE "JHELLER"."TEST1"

 ("A" NUMBER

) SEGMENT CREATION IMMEDIATE

 PCTFREE 10 PCTUSED 40 INITRANS 1 MAXTRANS 255

 NOCOMPRESS LOGGING

 STORAGE(INITIAL 65536 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS 2147483645

 PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1

 BUFFER_POOL DEFAULT FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT)

 TABLESPACE "USERS"

Chapter 2 Create an effiCient Database Development proCess

46

The preceding output is technically correct. But the output misses so much and

adds so much that is worthless. Programs like DBMS_METADATA provide a useful starting

point, but the output needs a lot of cleanup. The spacing is ugly, there are unnecessary

double quotes, and there are many settings that should always be based on the default.

The schema should be parameterized and controlled elsewhere in the script, with

a command like ALTER SESSION SET CURRENT_SCHEMA = SCHEMA_NAME. Things like

the tablespace, segment, and storage options should almost always use the default

options.

When scripts look like the preceding automated output, people will not update

them. Especially a junior developer, they will be too scared to touch any of that mess. It’s

impossible to tell what part of that CREATE TABLE command is important and what isn’t.

There are times when we want to edit one of those unusual options. For example,

if we have a large, read-only table, we can save 10% of the storage space by specifying

PCTFREE 0. But if we manually changed the number ten to the number zero in the

preceding script, would anyone ever notice?

Version control is an integral part of virtually all development environments, and

Oracle SQL development should be no exception. Our database schemas must truly

live in version-controlled text files. We should use version control software to manage

differences and to create a social coding platform. We should use our IDE to work with

those files, but we must handcraft any objects that are automatically generated.

 Empower Everyone
Making schemas easy to install and improving collaboration with version control are

important objectives, but they are only part of a larger goal. These technologies are

all about empowering everyone on our team. No one should have to ask permission,

fill out forms, or wait on other people to start developing and experimenting with our

programs. This chapter gave specific ideas for how to democratize an Oracle schema,

but there are many other ways to accomplish the same goal. Technology alone cannot

break down strict social hierarchies and make our organizations and projects more

accessible.

This chapter barely scratches the surface of everything needed to set up efficient

development processes. Many books have already been written on the subject,

and I don’t want to get into topics like the software development life cycle or agile

methodologies. This book is mostly about practical technologies, but it is worth

Chapter 2 Create an effiCient Database Development proCess

47

discussing a few sociological problems that tend to infect Oracle environments.

Oracle shops can benefit from fixing the power imbalance between developers and

administrators, opening communication, increasing transparency, and lowering the

barriers to entry.

 Power Imbalance Between Developers and Administrators
There’s often a power imbalance between developers and database administrators.

Oracle is mostly used in large businesses and government agencies, and DBAs pick up

bad habits from those large bureaucracies. There are often nonnegotiable requirements

for Oracle database environments; the databases must always be secure, must always

be available, and must never lose data. DBAs can be fired for allowing one of those

requirements to slip. There are times when a DBA must put their foot down and tell a

developer they can’t have what they want.

But database administrators would be wise to remember that their databases are

worthless if no one can use them. DBAs may protect the organization, but the people

creating value for the organization are more important.

Developers – don’t be afraid to ask the DBAs to explain their decisions. Keep in mind

that most DBAs may understand Oracle’s architecture and administration commands,

but they often don’t know SQL or PL/SQL. There are different kinds of DBAs, and it’s

important to know which kind you’re talking too. For example, an operations DBA won’t

understand your application or even know what database you’re working on. But an

applications DBA should know that information.

DBAs – don’t get mad when developers break things, especially in the lower

environments. If developers don’t break things, if they don’t generate ORA-600 errors,

then they’re not trying hard enough. Developers have to learn through mistakes more

than DBAs – don’t make things worse for them. And whenever you say “No” to a

developer request, always add an explanation for why you can’t do something. Try to

think of a workaround, especially for privilege issues. Between roles, object privileges,

system privileges, proxy users, and definer’s rights procedures, there’s almost always

a workaround. For example, if a developer asks for the ability to kill sessions on

production, you probably can’t give them the ALTER SYSTEM privilege. But you can create

a SYS procedure that kills sessions only for their user and then grant execute on that

procedure to the developer.

Chapter 2 Create an effiCient Database Development proCess

48

 Improve Communication
The phrase “improve communication” is a boring platitude. Of course we should all talk

with each other, and of course there are benefits to that communication. But if we’re

serious about improving communication, we must be prepared to pay the price. If we’re

not willing to put in the effort and not willing to accept some problems, then let’s not

pretend to be serious about open communication:

 1. Be willing to be wrong and embarrassed: The more we

communicate, the more mistakes we will make and broadcast.

There will be emails and phone calls where we admit to mistakes to

the wrong person, and our mistakes will be held against us. When

we get in trouble, we must resist the urge to say “all communication

must go through manager X.” There must be unfettered, direct

communication between everyone. A few embarrassing mistakes

are better than an eternity of indirect communication.

 2. Do not allow anyone to permanently hide from
communication: Do not allow anyone to constantly hide from

phone calls, emails, instant messages, or in-person conversations.

When people say “I get all my best work done after hours, without

interruptions,” translate that to “I don’t want to spend the time

to help other people.” If we have instant messenger, don’t allow

anyone to make themselves permanently offline. Developers need

large blocks of time to concentrate on difficult problems, but we

also need to work together.

 3. Waste time chatting with coworkers: We need to see each other

in person, even in a remote company. Be prepared to waste

time in irrelevant conversation – that’s called “getting to know

each other.” Don’t let people hide at home and say “I get more

work done when I’m not bothered.” Go out to lunch with your

coworkers. If they won’t go out to lunch, buy lunch and bring it to

the office. Go to the bar after work, even if you don’t drink. (By the

way, an open office has nothing to do with better communication.

Improving communication may require a few awkward

conversations, but it doesn’t require removing all sense of privacy

and personal space.)

Chapter 2 Create an effiCient Database Development proCess

49

 4. Invest in communication technology: Communication

technology is more than just phones and email. Get a good instant

messaging platform, allow everyone to host conference calls, and

make sure remote workers have a good Internet and phone setup.

And most importantly, create systems that allow communication

through code. The advice in previous sections lets us use version

control to communicate. On a shared database environment, a

junior developer has to ask permission and talk to multiple people

before they can even get started. With private databases and

schema definitions stored in version-controlled files, everyone is

fully empowered to work without bothering or blocking anyone. If

we have an experimental idea, we can tell people about it after it’s

working, through a pull request.

 Transparency
Transparency also requires a willingness to make mistakes and be embarrassed. This

is another area where the Oracle culture lags behind the rest of the software industry.

Oracle Corporation has a history of secrecy, like hiding their bug tracker behind a

paywall, forbidding benchmarks, and opposing open source. Don’t follow their example.

Let people look into our systems. Share our code repository, project plans, bug tracker,

and other documentation with everyone. Some people will use our mistakes against

us. And some people will find embarrassing bugs. But bugs are easier to fix the sooner

they’re found. According to Linus’s Law, “given enough eyeballs, all bugs are shallow.”

If we shorten our feedback loops, we can fail fast and fix our mistakes as soon as possible.

 Lower Barriers to Entry
We must constantly look for ways to lower the barrier to entry for our systems – not

just the programs we build but for all the surrounding knowledge. Large “Enterprise”

companies want to harvest our data, granularly control everything, and charge money

upfront. That strategy might work for large corporations selling to C-level executives, but

it’s not a good idea for our projects. Put documentation on a Wiki and let anyone modify

anything. Use a version control system that makes forking software as easy as clicking the

“fork” button. People may make annoying edits to our favorite page or use our software

in the wrong way; that’s simply the price we pay for encouraging participation.

Chapter 2 Create an effiCient Database Development proCess

50

 Summary
It’s worth spending time thinking about our development processes. Don’t simply follow

what everyone else does, they may not know what they’re doing either. Many Oracle

developers, DBAs, testers, and data analysts are only following the process because that’s

the way it’s always been done. Oracle was invented in the twentieth century, but that

doesn’t mean we have to code like it’s the twentieth century. We can find a way to make

our resources appear infinite. We can make our programs trivial to install, modify, and

share. And we can create a culture that fosters learning, experimentation, and teamwork.

Now that our development environment is set up, we can move to the next chapter and

discuss how to test what we build.

Chapter 2 Create an effiCient Database Development proCess

51
© Jon Heller 2019
J. Heller, Pro Oracle SQL Development, https://doi.org/10.1007/978-1-4842-4517-0_3

CHAPTER 3

Increase Confidence
and Knowledge
with Testing
Testing is more than simply demonstrating a program is correct. We must constantly

challenge ourselves to make ourselves better. Likewise, we must also challenge our

programs and our ideas. Testing is how we bring science into our craft and replace

guesses and myths with real knowledge about how the world works. Building good tests

can take a lot of time and effort, and Oracle databases present unique challenges for

building reproducible test cases. Luckily, Oracle provides many tools to help us test, such

as SQL, PL/SQL, the data dictionary, dynamic performance views, and much more.

 Build Confidence with Automated Tests
Automated testing requires a significant investment but is almost always worth the extra

effort. After we decide to use automated testing, we must decide how to handle data and

how to build the automated testing framework.

 Fix Bugs Faster
Programming is hard and is full of ambiguous requirements, unexpected side effects,

and regressions. Fully automated testing will obviously improve the quality of our

programs. The surprising thing about automated testing is that the most important

benefits are subtle and only indirectly related to quality.

52

Less time fixing bugs is the first obvious, direct benefit. Testing is painful and few

of us enjoy doing it. We’re always looking for excuses to avoid it, and there are plenty of

cognitive biases that help us ignore testing. Manual testing is easier to do, if it’s only done

once. So we lie to ourselves and think “we’ll only need to test this part once; after the

code is working we’ll never change it so there’s no chance of it breaking again.” Or maybe

testing is someone else’s job and we think we don’t have to worry about it.

When our assumptions about our superhuman programming ability are inevitably

proven wrong, there is a large price to pay. Fixing bugs is orders of magnitude easier

when we do it ourselves right after creating the bugs. The context is still fresh in our

minds, and there’s no communication overhead. There’s no need to discuss errors with

testers, or log bugs in a tracking system, or explain problems to management several

times. Building an automated test system is in our own selfish interest, even if there is a

separate testing team.

 Gain Confidence, Avoid Biases
Automated testing gives us confidence in our programs. Not only can automated testing

help us literally sleep better at night, it frees us to make more changes.

There are many horror stories about the unintended side effects of small

programming changes. To avoid those nightmares, many programmers make only the

smallest change possible. But to save time on expensive manual testing, programmers

have to bundle changes together. That combination creates the worst of all worlds: slow

releases with only the bare-minimum features.

Automated testing completely changes how we release software. When running the

full test suite is effortless, we don’t have to worry as much about making changes. The

cost of each release decreases and we can release more often. Don’t even think about

saying the word “agile” until you have automated testing.

Without automated testing we have to take test shortcuts. It’s too expensive to run

all the manual tests every time. If only a small part of the code changes, maybe we can

get away with only running a small part of the test cases. So we don’t change code unless

absolutely necessary. Which means our code doesn’t improve over time.

With automated testing we can change whatever we want, whenever we want, for any

reason we want. As long as the tests pass, and fully cover everything, go for it. Nothing calls

that private function anymore? Remove it. Wish that variable had a better name? Rename

it. There’s this one package, and you just don’t like the cut of its jib? Change it. Constant,

small amounts of refactoring will compound over time and pay off our technical debt.

Chapter 3 InCrease ConfIdenCe and Knowledge wIth testIng

53

Automated testing helps us avoid biases. Having a structured and standardized

system for evaluating our programs makes lying to ourselves harder. When the deadline

is looming and we’re working late at night, it’s awfully tempting to squint our eyes

and say the results look good enough. It’s always possible to lie about the results, but

it’s harder to ignore the poor quality of our code when we’re staring at a large “FAIL”

message, and the entire system stops working.

 Test-Driven Development
Instead of being treated as a second-class citizen in the software development life cycle,

we can promote testing to a prominent role through test-driven development. In test-

driven development, the automated tests are created before we start adding features or

fixing bugs. The test cases can become the primary form of the requirements. When the

tests pass, the requirements are met, and our job is done.

Test-driven development also helps us avoid our biases. The tests are the standards,

and it’s best to define our goals before we start doing something. It can be irritating to

start on an exciting new project and not be able to start coding immediately. But keep in

mind that we’re going to get fatigued by the end of the project. If we save the testing for

the end, we won’t define the criteria for success until we’re tired of the project and just

want it to be over.

Automated unit testing is not always appropriate. Sometimes we just need to

experiment and we don’t know where our code will take us. Sometimes the task is a one-

off or just isn’t that important. Sometimes, like for large data loads, the data is too dirty

and ill-defined. If we don’t understand the project well enough yet, we don’t want to

create a fake standard. Automated testing should be a practical tool, not a fanatic ideal.

 Create Useful Test Data
The biggest difference between application programming unit tests and database

programming unit tests is the focus on data. Don’t simply import as much data as

possible. Instead, focus on creating the right amount of relevant data.

Even for a relational database designed to handle terabytes of data, less is more. It is

tempting to import a huge amount of data for testing. Creating good sample data is hard,

and there’s often pre-generated data in other environments, or maybe even live data. Do

not give in to that temptation.

Chapter 3 InCrease ConfIdenCe and Knowledge wIth testIng

54

Using production data in development is asking for trouble. Production data

may be immediately convenient, but it could turn into a disaster later. Organizations

frequently update their data rules. It’s not unusual for an organization to allow

production data in lower environments one day and then forbid it the next. Getting rid of

that data, or de- identifying it, can be painful.

Production data isn’t that useful anyway. The current data may not represent all of

the corner cases the application might see and can lead us into a false sense of security.

Don’t deduce rules only from production data. Production data may only represent what

users have generated so far, not necessarily the limits of what users can ever generate.

When creating sample data, every byte should mean something. One of the biggest

problems with loading production data is that it’s overwhelming. For test data, quality

is much more important than quantity. No human being can understand a gigabyte of

data, so we shouldn’t load that much data into our system. Our systems are complex

enough, let’s not confuse ourselves further by loading unnecessary data. It’s better to

take the time to create only the data necessary.

Generating data is only as difficult as the business logic. Don’t bother looking for a

program to help generate fake data. There is no commercial program that understands

our custom systems. Once we understand the business rules, and exactly what data we

need to generate, there are a few simple Oracle SQL patterns that make the job easy.

The simplest way to generate fake data is with the LEVEL trick:

--Generate three rows.

select level a from dual connect by level <= 3;

A

-

1

2

3

To load specific data, SELECT from DUAL and combine statements with the UNION ALL

set operator:

--Generate specific data.

select 1 a, 2 b from dual union all

select 0 a, 0 b from dual;

Chapter 3 InCrease ConfIdenCe and Knowledge wIth testIng

55

A B

- -

1 2

0 0

 Create Large Test Data
While accuracy and ease of use are the most important characteristics of test data,

occasionally we need to use large data sets for performance testing. Large, complex

systems will ideally have at least two data sets: a small data set for automatic unit tests

and a large data set for rarer performance testing. We need to ensure our programs can

scale up before they are moved to production.

Luckily, combining and tweaking the tricks learned in the previous section is almost

good enough for generating large amounts of test data. The LEVEL trick has memory

limitations we need to work around. After about one million rows, the level trick

generates an error:

--Raises: ORA-30009: Not enough memory for CONNECT BY operation

select count(*) from

(

 select level from dual connect by level <= 999999999

);

When the preceding error happens, we simply have to break the load into multiple

steps. Create the table, load the initial data with LEVEL, and then insert the table into

itself repeatedly, to double the table size. Creating data can get tricky when there are

unique or foreign keys. But normally when we’re loading a large amount of data, it’s for

performance testing, and the data doesn’t have much meaning.

--Generate large amounts of data.

create table test1(a number);

insert into test1 select level from dual connect by level <= 100000;

insert into test1 select * from test1;

insert into test1 select * from test1;

insert into test1 select * from test1;

...

Chapter 3 InCrease ConfIdenCe and Knowledge wIth testIng

56

For extremely large data loads, a few more tricks can help, such as creating tables

with the NOLOGGING option and using INSERT /*+ APPEND */ to enable faster direct-path

writes. There are risks with loading large data, and direct-path inserts are discussed in

later chapters.

Loading relevant data is more of a business logic challenge than a technical

challenge. The preceding simple tricks are good enough to get us started.

 Remove Test Data
Part of creating test data is removing that data when we’re done. Test data can pollute

our environment and cause problems if we’re not careful. Automated unit testing

frameworks often have a TearDown procedure to handle cleaning up after testing is done.

Cleaning up from tests is not always trivial; inserting data in one table may lead to results

scattered throughout the schema.

Instead of trying to remove the test data piece by piece, it may be easier to reset

the whole schema. With private database development, this is as easy as dropping and

recreating the schema. On a shared database, where we don’t have scripts to rebuild the

environment, there are still technologies that can help us test faster. We can recreate the

environment using flashback, virtual machines, multitenant, etc.

 How to Build Automated Tests
It’s easy to get started if you’re not already using automated unit tests. There are many

different programs available, and even writing your own test program is a fine choice.

Don’t get overwhelmed by the choices – whatever program we choose, it’s better than

doing nothing.

JUnit is the most popular unit testing framework, although it is meant for Java. That

program is a member of the xUnit family, and there are similar programs for almost

every programming language. Unit testing isn’t as common in Oracle as it is in Java, but

there are still several choices. The most popular option is currently utPLSQL.

Installing and using utPLSQL is simple: download a free and open source program,

unzip it, and run a single SQL*Plus script. The detailed steps can be found in the

program repository at https://github.com/utPLSQL/utPLSQL. This chapter only covers

a small part of that program. The point is not to recreate an utPLSQL tutorial but to show

you how simple it is to get started. Don’t get intimidated by all of the options. If we only

use 5% of the features, the program can still reshape our entire development process.

Chapter 3 InCrease ConfIdenCe and Knowledge wIth testIng

https://github.com/utPLSQL/utPLSQL

57

utPLSQL requires us to add “annotations” to our code. Annotations configure the

unit tests through formatted comments in package specifications. The test is performed

by an “expectation,” a statement that compares the actual value with the expected

value. Tests are executed by calling a pre-built package, and the output can be viewed in

multiple formats.

For example, let’s say we want to test the data in the space database. To start we

might want to check the number of rows in the two main tables, LAUNCH and SATELLITE.

First, we create a package specification to hold the annotations. The annotations define a

single test suite, named “Space,” and two tests.

create or replace package space_test as

 -- %suite(Space)

 -- %test(Check number of rows in launch)

 procedure test_launch_count;

 -- %test(Check number of rows in satellite)

 procedure test_satellite_count;

end;

/

Now we need to implement the specification and call the expectations. The following

package body shows the two procedures. Each procedure counts the number of rows,

saves the count into a variable, and compares that variable with the hard-coded

expected number. As of this writing, there are 70,535 launches and 43,113 satellites. To

make the results interesting, let’s expect the wrong number for the satellite count.

create or replace package body space_test as

 procedure test_launch_count is

 v_count number;

 begin

 select count(*) into v_count from space.launch;

 ut.expect(v_count).to_(equal(70535));

 end;

 procedure test_satellite_count is

 v_count number;

 begin

Chapter 3 InCrease ConfIdenCe and Knowledge wIth testIng

58

 select count(*) into v_count from space.satellite;

 ut.expect(v_count).to_(equal(9999));

 end;

end;

/

Here’s one of several ways to run the unit tests:

begin

 ut3.ut.run();

end;

/

The following is the DBMS_OUTPUT of the run. The output contains the program

name and the results of the two tests. One of the tests was successful and doesn’t show

anything. But one of the expectations failed, and the output explains why it failed.

Space

 Check number of rows in launch [.004 sec]

 Check number of rows in satellite [.005 sec] (FAILED - 1)

Failures:

 1) test_satellite_count

 Actual: 43113 (number) was expected to equal: 9999 (number)

 at "JHELLER.SPACE_TEST.TEST_SATELLITE_COUNT", line 13

 ut.expect(v_count).to_(equal(9999));

Finished in .013 seconds

2 tests, 1 failed, 0 errored, 0 disabled, 0 warning(s)

That’s it. A fully functioning, automated test suite in less than an hour, in only a few

lines of code. Automated testing can be that simple.

There are more features available. We can generate fancier reports, check the code

coverage to ensure that all lines of code are tested, use automated testing in a continuous

integration system, etc. But those features are not necessary, don’t let them intimidate

you into not using unit testing.

Now that we’ve started writing unit test packages, where do we go from here? First,

treat those test packages like regular code. Test packages can get ugly, full of repetitive

Chapter 3 InCrease ConfIdenCe and Knowledge wIth testIng

59

boilerplate code, and include complicated setups for each test. Don’t be surprised if the

unit test code is larger than the rest of the code. To help manage unit tests, split the code

into logical packages and files and give them good names and comments.

The standard manual testing advice applies just as well to automated unit tests. Try

to test every line of code and ideally every path. When there is a loop, create a test for the

boundary conditions – off-by-one problems will happen at the beginning or end of the

loop, not in the middle. Sometimes a test should focus on one small thing, so that when

the test fails we know exactly what to fix. Other times a test should cover lots of things, to

ensure we catch as much as possible. Whatever our style, we must make failures obvious;

a single failure should break the build and stop everything.

 Build Knowledge with Minimal, Complete,
and Verifiable Examples
Building informal test cases is difficult but important. Creating a test case that is

minimal, complete, and verifiable requires time and discipline. We must ensure our test

cases are easily shared with others, and we must watch out for the XY problem.

 Why Spend So Much Time Building
Reproducible Test Cases?
Developers need help and need to ask a lot of questions. Despite what we heard in

kindergarten, there are lots of bad questions. The best way to ask a question about

programming is to include a reproducible test case. During the process of building a

test case, and imagining explaining the problem to someone else, we will often solve the

problem by ourselves.

Occam’s razor says that the simplest answer is usually the right one. For Oracle SQL

problems, the simplest answer is one of these: we forgot to commit, we made a typo, or

we’re not really getting the error message we claim we saw. It’s frustrating and common

for people to respond to our questions with one of those simple answers. So we might as

well answer their concerns ahead of time. Before people will invest their time solving our

problems, we must demonstrate that we checked for all the obvious problems.

Chapter 3 InCrease ConfIdenCe and Knowledge wIth testIng

60

A good test case is a great way to prove something to ourselves and help us avoid

biases. When we’re heavily invested in making something work, or making it fast, we

may only see what we want to see. Building tests with reproducible, clear, and objective

results makes it harder to deceive ourselves.

Reproducible test cases are necessary for dealing with adversarial contractors.

Many people have an incentive to not believe us, and they think “our software is perfect,

that failure or behavior isn’t possible.” Those responses can make us angry, but we

shouldn’t take it personally. Unhelpful responses are often the result of biased people

who subconsciously know they can go home early if our complaints are groundless. Or

perhaps their management only cares about the number of tickets opened and closed;

making a ticket go away counts just as much as solving a real problem. Sometimes we

need to play stupid games to get the support we paid for.

The easiest way for a support engineer to make a ticket go away is to ask for more

information. If they ask for enough information, eventually we will give up and let them

close the ticket. Creating a good test case will avoid many of those games.

The phrase “minimal, complete, and verifiable examples” comes from Stack

Overflow and has developed over time to help people post useful questions. You can

read the full description at https://stackoverflow.com/help/mcve. The following

sections explain the different components of that phrase in an Oracle context.

 Minimal
Omit needless code.

I’m tempted to only use that one sentence for the entire section. Unfortunately,

simplifying isn’t simple, and we need to work hard to make things look easy.

Programming is hard and bugs can multiply quickly. The more code in the test case,

the more chances there are to introduce irrelevant problems. And the more chances

there are for people to focus on the wrong thing and nitpick unrelated mistakes. Large

code takes more time to understand, and fewer people will be willing to look at it. If we

have a purely technical issue, exclude as much business logic as possible. We must shine

a focused light on the smallest possible amount of code. But we must measure the code

by the number of lines and variables, not by the number of characters; don’t use single-

letter variable names just to make the file size smaller and don’t forget to add helpful

comments.

Chapter 3 InCrease ConfIdenCe and Knowledge wIth testIng

https://stackoverflow.com/help/mcve

61

The same rules apply to schema objects and data. Do not create two columns when

one column will do. Do not insert two rows of data when one row will do.

The tricky part is that our problem may happen in a large context. A problem might

happen in a query with dozens of tables, reading billions of rows. It can take hours to

remove as much as code and data as possible, but still reproduce the bug. Cutting a large

query in half, checking if it fails, and repeating can take a long time. Eventually we will be

left with a problem that fits inside a small SQL worksheet.

Minimizing code is time consuming and tedious. But the process lets us pinpoint the

precise problem, is easier than arguing about the code and data, and avoids uploading

massive files that nobody wants to read.

 Complete
We must create a test case that is runnable and self-contained. Then we must write the

code on a fresh database, to ensure that there are no unexpected dependencies not

included in the test case. People won’t install other products to help us with a problem,

make sure everything is in one place.

The following is an example of a complete test case. The code creates the objects,

adds the data, gathers optimizer statistics, and runs the problem query.

--Create the table.

create table simple_table(simple_column number);

--Add sample data.

insert into simple_table select 1 from dual;

--Gather statistics, if it's a performance problem.

begin

 dbms_stats.gather_table_stats(user, 'simple_table');

end;

/

--This is the query that fails or is slow.

select *

from simple_table;

Chapter 3 InCrease ConfIdenCe and Knowledge wIth testIng

62

The preceding code is the ideal, but our entire schema is the reality. We need to meet

somewhere in the middle. Sometimes it helps to start with the preceding code and add

until something breaks. Other times it helps to start with the real schema and subtract

until the code works.

The preceding code may still not be sufficient. For Oracle problems, it’s important

to give the full version number. The version may not be related to the problem, but the

version may limit the available troubleshooting techniques and fixes. It may also help to

include the edition and options, such as Enterprise Edition with the partitioning license.

The platform almost never matters, but it doesn’t hurt to include it anyway.

For example: The preceding code works on Oracle 12.2.0.1.0, Enterprise Edition

(with partitioning option, diagnostics pack, and tuning pack), on 64-bit Windows 7.

It’s also important to gather system parameters. There are literally hundreds of

parameters and it’s hard to know which of them matter. We can narrow down the search

by only looking for non-default parameters, with this query:

select name, value

from v$parameter

where isdefault = 'FALSE'

order by name;

But the preceding query is not always good enough. For example, on certain

processors, the default value for CPU_COUNT is wrong and can cause performance

problems. And many parameters can be changed at the session level, either as part of

a logon script or through a trigger. Unfortunately there is no way to get a list of all non-

default session parameters.

It’s impossible to make a test case truly complete – if you wish to make a test case

from scratch, you must first invent the universe. But with a little effort, we can get enough

information 99% of the time. At the very least, our reproducible test case shows others

that we’re serious, which makes it more likely for other developers to try the sample code

and investigate the problem.

 Verifiable
Nobody can verify code that “doesn’t work.” We need objective measures for our code,

such as a complete error message or detailed performance expectations.

Chapter 3 InCrease ConfIdenCe and Knowledge wIth testIng

63

We all hate error messages and wish they would go away. But we must resist the urge

to quickly dismiss and ignore error messages. By default, an Oracle error will generate

the object name, an error number, an error message, and the line numbers. If the error

propagated through multiple levels, all levels of the error message will be included. By

default, Oracle includes all the information we need to solve most problems. But the

error message only helps if we write down the entire message. Developers go to great

lengths to raise useful exception messages. Don’t throw out their work by ignoring the

messages and saying “there was an error.”

SQL*Plus is not good at interactive querying and programming. The greatest

strength of SQL*Plus is its simple, universal, text-only interface to Oracle. If we can do

something in SQL*Plus, anybody can copy the text, run the code, and verify the results

for themselves.

Programs like Oracle SQL Developer are much nicer for most database work, but

they are not as helpful for creating test cases. If we send a screenshot, other developers

can’t extract the code as easily. If we send just the text we used in SQL Developer, other

developers may be missing information about how we ran the code – there are different

window types with different behaviors. And the output and error messages are not

always easy to copy in SQL Developer.

SQL*Plus looks ugly but at least it’s an ugly we can all agree on. With a few simple

tricks, we can create a SQL*Plus environment that shows exactly what we ran, where we

ran it, and how long it took.

SQL> set sqlprompt "_user'@'_connect_identifier> "

JHELLER@orcl9> set timing on

JHELLER@orcl9> select count(*) from dba_objects;

 COUNT(*)

 74766

Elapsed: 00:00:00.21

JHELLER@orcl9>

Changing the SQL prompt makes it obvious what user ran the code and what

database it was run on. People are rarely rude enough to directly ask us “are you sure

you’re on the right database?” But in their head they’re thinking it, so we might as well

put their mind at ease. On the other hand, sometimes the database name is sensitive and

Chapter 3 InCrease ConfIdenCe and Knowledge wIth testIng

64

we need to hide it. With text output, it’s simple to find and replace the name, whereas

many screenshots include lots of unintended details, perhaps even from other programs.

The SET TIMING ON command shows the wall-clock run time of each statement. And

the statements themselves are easily copied and pasted. With a tiny amount of effort, we

can eliminate much of the uncertainties of a test case.

For performance tuning it is critical to include the precise timing expectations. An

OLTP system processing one row might expect a result in less than a second. A data

warehouse processing a billion rows might expect a result in less than a week. We must

provide more information than “it’s slow.” It helps to explain how much time our code

takes, how much time we think it should take, and why. It helps to list our performance

assumptions, because sometimes our expectations are unrealistic. Perhaps the process

that we think should take less than a second couldn’t possibly take less than a second,

with our current data structures, algorithms, and hardware.

 Sharing Tests
Creating reproducible test cases is beneficial for our own education, but most of the time

we need to share those test cases with others. If we want to add to the world’s knowledge,

we need to be able to release all of the details, so that others can prove us wrong. Without

a fully reproducible test case, we’re not doing science.

Organizations like to keep all their test cases to themselves, but there’s rarely a need

to hide that information. Especially in an agile environment, the customer should be

given access to view all the tests. If we’re lucky, the customer will find a problem or

missing assumption early in the development process.

To optimize sharing, use text as much as possible. It’s easier to create a test case with

an integrated development environment, but it’s worth recreating the final version in

SQL*Plus to make everything work with copy and paste. If we must use a screenshot,

take the time to rearrange the window to make it as small as possible, and edit the

picture to only include relevant details.

Ideally, the audience for our test case has a private Oracle database, with full access,

and can easily drop and create an unlimited number of objects. If our audience does not

have that environment, there are a growing number of online solutions for building and

sharing code snippets. The most popular database site is http://SQLFiddle.com/.

The simple interface lets anyone create a schema, query the schema, and share

the schema with others, through a simple URL. Oracle built a similar site at

Chapter 3 InCrease ConfIdenCe and Knowledge wIth testIng

http://sqlfiddle.com/

65

http://livesql.oracle.com. Oracle’s website has more features than SQL Fiddle but

requires an account.

 Avoiding the XY Problem
Before sending the final version of the test case, we need to take a step back and try to

avoid the XY problem. Programming tends to lead us down a deep garden path. We want

to do X, and we think Y is the solution. When Y doesn’t work, we ask a question about Y,

when our real problem is with X.

A common example of the XY problem is when people ask “how do I split a

comma- separated list into different rows?” It’s an important question, and there are

times when it’s necessary. But splitting strings implies that someone is not following

the most basic rules of the relational model. The developer asking the question and the

person who will someday replace them are in for a lot of trouble trying to use a broken

data model. The correct answer is “don’t do that.” It’s not the answer people want to hear,

but it is the answer they need to hear.

We fall into this XY trap because programming occasionally requires focusing on

minor details, and we don’t see the big picture. The way out of the trap is to occasionally

stop and ask ourselves “why?” a few times.

When we find ourselves asking for help to do something weird, it’s important to

explain why we need to do it the weird way. If we’re lucky, someone will interrupt us and

say “your premise is wrong, that limitation doesn’t apply to version A anymore, try using

feature B instead.” At the very least, explaining why we’re doing something weird will

convince other people that we’re not wasting their time.

 Oracle Performance Testing
Building reproducible test cases for Oracle performance problems is especially

challenging. Oracle performance test cases tend to be full of heisenbugs – errors or

behaviors that disappear when someone else looks at them. Oracle SQL is a declarative

language; Oracle has a lot of leeway on how to execute things, including the ability to

change its mind. Before we learn about performance concepts and tools in Part IV, we

must first learn how to accurately measure performance.

The wall-clock run time is the central unit of measurement for performance tests. If

something runs faster, it is using less resources and is better for both the users and the

system. Don’t worry too much about measuring CPU, I/O, locks, mutexes, etc.

Chapter 3 InCrease ConfIdenCe and Knowledge wIth testIng

http://livesql.oracle.com

66

But there are important exceptions to the rule of only measuring run time. For

example, we don’t want to create a parallel solution that decreases run time from 100

seconds to 99 seconds, but increases CPU utilization from 1% to 99%. Run time doesn’t

always correlate to resource consumption. Many Oracle developers find it helpful to

proactively monitor resource consumption with programs such as RUNSTATS.1

The most frustrating part of performance tests is when the run time is not consistent.

Oracle databases warm up and tune themselves over time, it’s quite common for the

second execution of a query to be significantly faster than the first execution.

Caching is the largest factor in performance test inconsistency. When we run the

query the first time, Oracle reads the table and index blocks from disk and stores the

blocks in memory. The second time we run the query, the database can read the blocks

with much faster memory access. Depending on our environment, we may want to test

the system either “hot” or “cold.” On a data warehouse, where our large tables likely

won’t be cached, testing a cold system is better. On an OLTP system, where popular

tables should be in memory, testing a hot system is better. We can clear Oracle’s memory

with the command ALTER SYSTEM FLUSH BUFFER_CACHE. But that command won’t clear

the operating system cache, and we may not want to run it on a shared database where

other users could be affected.

Intermittent system activity can also spoil our thorough test cases. This is more of

a problem on a shared database, but even our laptops may suddenly start running an

antivirus scan and slow down. Instead of measuring system activity, which is difficult,

we can run the tests multiple times and alternate between the competing approaches.

Alternating between the different options will make it more obvious if the system

suddenly gets faster or slower. We may also want to throw out the minimum and the

maximum run times.

Execution plans will also change over time. If we wait long enough, the system will

likely automatically gather missing statistics. The Oracle optimizer is also able to learn

from its mistakes and may use cardinality feedback, adaptive cursor sharing, and SQL plan

directives during the second or third run. (Those features are briefly discussed in Part IV.)

Carefully check the Note section of the execution plan to see if there are any weird tricks

being applied. To create a blank slate for testing, it is sometimes necessary to run ALTER

SYSTEM FLUSH SHARED_POOL and to re-gather statistics. But as with the buffer cache, we

need to be careful running those commands if we’re running on a shared database.

1 There are many implementations of this idea, such as https://github.com/oracle-developer/
mystats.

Chapter 3 InCrease ConfIdenCe and Knowledge wIth testIng

https://github.com/oracle-developer/mystats
https://github.com/oracle-developer/mystats

67

 Oracle Detective Kit
The first of E.F. Codd’s rules for relational databases is that a database must be able to

manage itself entirely through a relational interface. In Oracle databases there is a wealth

of information available about the database, and that information can be accessed

through the database. When our tests inevitably need to look under the hood of our

programs and schemas, we can use the data dictionary, dynamic performance views,

Oracle packages and functions, and other Oracle tools.

 Data Dictionary Views
There are roughly 1000 data dictionary views that provide metadata about virtually

everything inside the Oracle database. There are four different prefixes for data

dictionary views, USER_, ALL_, DBA_, and starting with 12.1, CDB_. The USER_ views

provide data for the current user, the ALL_ views provide information for all users that

we have access to, the DBA_ views provide information for all users, and the CDB_ views

provide information for all users for all containers.

The data dictionary has great backward compatibility. This means we can write

a script for version X and safely expect the script to work in version X+1. The column

names almost never change, except for columns added at the end of the views.

The downside to this backward compatibility is the data dictionary contains some

deprecated features. The LONG columns in the dictionary are difficult to work with. There

is still no easy way to use SQL functions against LONG values, so searching those columns

takes a few extra steps.

For example, finding all columns that default to zero should be this easy:

SQL> select table_name, column_name, data_type, data_default

 2 from dba_tab_columns

 3 where to_char(data_default) = '0'

 4 order by 1,2,3;

where to_char(data_default) = '0'

 *

ERROR at line 3:

ORA-00932: inconsistent datatypes: expected CHAR got LONG

Chapter 3 InCrease ConfIdenCe and Knowledge wIth testIng

68

Unfortunately we need to add an extra step to make the preceding query work. First

we have to save and convert the data, and then we can filter the results.

create table convert_tab_columns as

select table_name, column_name, to_lob(data_default) data_default

from dba_tab_columns

where data_default is not null;

select table_name, column_name, to_char(data_default) data_default

from convert_tab_columns

where to_char(data_default) = '0'

 and rownum = 1

order by 1,2,3;

TABLE_NAME COLUMN_NAME DATA_DEFAULT

-------------------- ----------- ------------

CDB_LOCAL_ADMINAUTH$ LCOUNT 0

Another problem with the data dictionary is that some column names don’t make

sense anymore. In an ancient version of Oracle, privileges were only granted on tables,

and the view name DBA_TAB_PRIVS made sense. Unfortunately that view now contains

privileges for all object types.

There are also some ancient, deprecated data dictionary views that should be

avoided. Those views are available for backward compatibility, but do not contain nearly

as much data as the views that replaced them. Avoid CAT, COL, COLS, TAB, and TABS. Note

that Oracle does not contain an INFORMATION_SCHEMA like many other databases.

Minor problems aside, the data dictionary has a wealth of information. We don’t

need to memorize the 1000 views or put a poster on our office wall. But we may want to

search for and bookmark the Database Reference for our Oracle version. The following is

a list of the most important data dictionary views, some of which are self-explanatory.

 1. *_ADVISOR_*: Status and results of automatic advisors, which

may become increasingly important with the new autonomous

database features.

 2. *_AUDIT_TRAIL: The audit data depends on the configuration,

but typically includes useful information about logon history.

 3. *_AUTOTASK: Special system jobs to gather stats, auto-tune, etc.

Chapter 3 InCrease ConfIdenCe and Knowledge wIth testIng

69

 4. *_CONSTRAINTS: Unique, check, primary, foreign.

 5. DUAL: A table with only one row, when we want to create data.

 6. *_ERRORS: Errors in our code causing invalid objects.

 7. *_HIST_*: Views used for the automatic workload repository, for

performance tuning (but requires a diagnostics pack license).

 8. *_INDEXES, DBA_IND_COLUMNS

 9. *_JOBS/SCHEDULER: Scheduled jobs.

 10. *_OBJECTS: All schema objects, useful for finding things.

 11. *_RESUMABLE: Sessions waiting for resources.

 12. *_ROLE_PRIVS/SYS_PRIVS/TAB_PRIVS: Role, system, and

object privileges.

 13. *_SOURCE: Source code for all code objects, except views.

 14. *_SYNONYMS

 15. *_TABLES, TAB_COLUMNS

 16. *_USERS

 17. *_VIEWS: Includes the source of view (not included in

*_SOURCE).

 Dynamic Performance Views
Over 850 dynamic performance views contain information about the current state of an

Oracle database. These views are more about Oracle than about our data, so they tend to

be more cryptic, but just as useful as the data dictionary. There are two types of dynamic

performance views, V$ and GV$. The only difference is that V$ views contain data about

the current instance we are connected to, and GV$ contains data about all instances. If

we’re not connected to a Real Application Cluster database, then the two types of views

will be almost identical.

Like the data dictionary, the dynamic performance views also have good backward

compatibility. The full list can be found in the Database Reference. The following is a list

of the most common views, with an explanation for the ones that are not

self- explanatory.

Chapter 3 InCrease ConfIdenCe and Knowledge wIth testIng

70

 1. V$ASM*: Automatic Storage Management data

 2. V$DATABASE: Database information from the control file

 3. V$INSTANCE: Current state of the database

 4. V$PARAMETER: Initialization parameters

 5. V$PGASTAT, V$PGA*: Program Global Area data (session

memory, like for sorting and hashing)

 6. V$PROCESS: Active processes, can be tied to an operating system

process

 7. V$PX*: Parallel processes

 8. V$SESSION: Current sessions and where they connect from

 9. V$SESSMETRIC, V$SESSTAT: Session metrics and statistics,

useful for measuring resource consumption and performance

tuning

 10. V$SGASTAT, V$SGA*: System Global Area data (system memory,

for things like caching data and execution plans)

 11. V$SQL*: Data about SQL statements

 12. V$SYSMETRIC*, V$SYSSTAT: System metrics and statistics,

useful for measuring total resource consumption

 13. V$VERSION: The precise version of the database

The dynamic performance view V$PARAMETER is especially important and each

row in that view can be critical. There are roughly 400 rows, and as expected they are

thoroughly documented in the Database Reference. It’s hard to say which parameters are

most critical; even a single wrong parameter can break the database in weird ways. But

the following parameters are the ones most likely to be modified.

 1. Compatible: Compatibility version of the data files; once we

change this parameter, there is no going back.

 2. control_files: Location of the critical binary files that tell Oracle

how to start the database (there should be at least two paths in the

value, we never want to lose these files).

Chapter 3 InCrease ConfIdenCe and Knowledge wIth testIng

71

 3. cpu_count: Should be the number of processors, but on some

platforms, it’s incorrectly set to the number of supported threads;

this number is important for parallel processing.

 4. memory_target/pga_aggregate_target/sga_target: Oracle

memory settings are ridiculously complicated; read the manual a

few times for each of these settings before you touch them.

 5. nls*: National Language Support, these parameters control

how data is compared and stored (binary or by language rules)

and how some data is formatted. Do not rely on the database

formatting settings, they are frequently overridden by session

settings.

 6. optimizer_index_caching, optimizer_index_cost_adj, db_file_
multiblock_read_count: Frequently abused parameters, do not

set these unless you are looking for trouble.

 7. parallel*: Control parallel processing; think carefully and read the

parallel processing guide before changing these parameters.

 8. Processes, sessions: Limit the number of Oracle operating system

processes and connections. These numbers frequently need to be

increased.

We should not change the preceding parameters unless we think we are smarter

than the engineers at Oracle. There will be plenty of times when we are smarter than

Oracle engineers, like when we know something specific about our environment. For

example, only we know how many sessions our database is intended to handle. If we

have a database that must allow a thousand connections, then it’s necessary to increase

SESSIONS and PROCESSES, even though the change will slightly increase the memory

requirements.

On the other hand, we don’t know how much faster or slower our indexes are than

Oracle’s expected performance; changing OPTIMIZER_INDEX_COST_ADJ is almost certainly

a bad idea. There are times when changing that parameter can improve a specific query’s

performance, by changing an execution plan from a full table scan to an index scan.

But we shouldn’t alter the entire system to fix a problem for just one statement. The

solution should be proportional to the size of the problem, and Oracle allows us to set

that parameter per session or per query. The reason I included this parameter on the

Chapter 3 InCrease ConfIdenCe and Knowledge wIth testIng

72

preceding list is not because we need to customize it, but because we frequently need to

change it back to the default after someone else mistakenly modifies it.

 Relational Tools for Inspecting Databases
There are many other tools scattered throughout the database that let us investigate the

database.

VSIZE is a useful function that tells us the size in bytes of a value. That may sound like

a trivial feature at first, but a surprisingly large number of architectural decisions hinge

on the size of data types. There are some silly but persistent myths that are a variation of

“Oracle always allocates as much space as possible.” A few calls to VSIZE will dispel those

myths. VSIZE also demonstrates that small numbers may take up more space than we

might expect.

--Byte size of values:

select

 vsize(0) zero_size,

 vsize(1) one_size,

 vsize(10) ten_size,

 vsize(date '2000-01-01') date_size,

 vsize(cast('a' as varchar2(4000))) string_size

from dual;

ZERO_SIZE ONE_SIZE TEN_SIZE DATE_SIZE STRING_SIZE

--------- -------- -------- --------- -----------

 1 2 2 7 1

DUMP displays the internal contents of a value. This function can be useful when

dealing with non-ASCII characters. For example, imagine a table that contains links.

When we query the table, everything looks fine:

select * from random_links;

URL

google.com

Chapter 3 InCrease ConfIdenCe and Knowledge wIth testIng

73

Hold on a minute, let’s dig deeper. That string looks like “google.com”, but is the value in

the database really “google.com”? Look at this output and see if you can spot the problem:

select dump(url,16) from random_links;

DUMP(URL,16)

--

Typ=1 Len=11: 67,6f,c3,b6,67,6c,65,2e,63,6f,6d

The first thing you might notice is Len=11. The length is 11 bytes, but “google.com”

only has ten characters. If you look carefully at the hexadecimal values, you’ll notice that

the second “o” is not really “o”, it’s “ö”. It’s an “o” with a dieresis, or two dots on top.

This trick is called visual spoofing. It’s intentionally hard to see, and without a

function like DUMP, we may have never spotted the problem. If you’re curious, the

malicious string was created like this:

insert into random_links values('go'||unistr('\00f6')||'gle.com');

In theory we can recreate any object using the data dictionary. For example, all the

features related to a table can be found in data dictionary views such as ALL_TABLES,

ALL_TAB_COLUMNS, ALL_CONSTRAINTS, etc. In practice it is difficult to reconstruct the full

data definition language for objects, especially for the obscure features. The function

DBMS_METADATA.GET_DDL can make our lives much easier and has many options for

adjusting the formatting. For example, to find the statement behind the table LAUNCH:

select dbms_metadata.get_ddl(

 object_type => 'TABLE',

 name => 'LAUNCH',

 schema => 'SPACE') ddl

from dual;

DDL

 CREATE TABLE "SPACE"."LAUNCH"

 ("LAUNCH_ID" NUMBER,

 "LAUNCH_TAG" VARCHAR2(15 CHAR),

 "LAUNCH_DATE" DATE,

...

Chapter 3 InCrease ConfIdenCe and Knowledge wIth testIng

74

But if we find ourselves playing schema detective, we’ve already lost. As discussed in

Chapter 2, the best way to find schema scripts is to look in version-controlled text files. The

full output for the preceding query, while technically correct, has some formatting issues

and includes a huge amount of worthless information. Whereas our installation scripts are

all signal and no noise, there should be no need to put up with meaningless bytes.

The SYS_CONTEXT function can retrieve data about the current session’s contexts. We

can create custom contexts but the most common context is the default USERENV. It’s a

convenient way to find out information about the current session, without having to look

through multiple tables. For example, to get the name of the host machine that we used

to connect to the database:

select sys_context('userenv', 'host') from dual;

For code analysis, PL/Scope can be useful for tasks that require understanding the

code. PL/Scope can find specific dependencies, unused variables, etc. And the package

DBMS_DEBUG can help us step through our code line by line as it executes. Those are

interesting tools, but they are generally only helpful when combined with an integrated

development environment.

 Non-relational Tools for Inspecting Databases
Oracle includes many non-relational tools to help inspect the database. (Performance

tuning tools are a large topic and are covered in Part IV.) A program can work with

a database and maybe even run inside a database program, but not necessarily be

relational. This distinction is important because non-relational tools cannot be used in

as many contexts as relational tools.

For example, the DESC command in SQL*Plus is a neat way to quickly get information

about a table.

SQL> desc space.launch

 Name Null? Type

 --------------------- -------- -----------------

 LAUNCH_ID NOT NULL NUMBER

 LAUNCH_TAG VARCHAR2(15 CHAR)

 LAUNCH_DATE DATE

...

Chapter 3 InCrease ConfIdenCe and Knowledge wIth testIng

75

While the DESC command is useful, we may want to avoid becoming too dependent

on it, because it’s only available in SQL*Plus. Even though SQL*Plus is available to

almost all developers, most developers are going to use a graphical user interface (GUI).

Using a query against the data dictionary, or a call to DBMS_METADATA.GET_DDL, may take

a bit more work, but it’s worth it to ensure that we build purely relational solutions.

The traditional export and export data pump programs, EXP and EXPDP, can also

be used to find useful data and metadata. The undocumented ORADEBUG command

can output individual blocks and help us see exactly how data is stored on disk. Oracle

tracing can help us understand the optimizer’s decisions and see exactly what is running

in the background to support our queries. And there’s a whole world of tools that are

generally only useful to database administrators: listener control, server control, etc.

Oracle is closed source, but if we are familiar with all of these metadata tools, we can

figure out exactly what is going on. It’s helpful to know a wide variety of database tools,

because different people have different styles and preferences for investigating database

problems. For example, I’m almost always working in PL/SQL Developer and use Ctrl-

right click to describe a table. But for building demos, or when working with people who

prefer SQL*Plus, it’s helpful to at least be aware of the DESC command.

 Summary
When we start programming, we should be skeptical of our programs and ideas.

Eventually we must become confident of our programs and knowledge, but that

confidence should be the product of automated unit testing and concise test cases.

Luckily, Oracle provides a wealth of views and tools to help us build that confidence. But

there’s only so much we can do by ourselves, and eventually we’ll need help from other

people. The next chapter will help us find reliable sources for Oracle knowledge.

Chapter 3 InCrease ConfIdenCe and Knowledge wIth testIng

77
© Jon Heller 2019
J. Heller, Pro Oracle SQL Development, https://doi.org/10.1007/978-1-4842-4517-0_4

CHAPTER 4

Find Reliable Sources
Oracle SQL programming has an epistemic problem. Epistemology is the study of

knowledge, or simply asking ourselves what do we know and how do we know it. We

don’t need to take a philosophy class before we start programming, but we do need to

carefully consider our sources. The Oracle programming culture places too much weight

on unreliable epistemologies, such as tradition and scripture, and not enough weight on

science and reason. If we listen to the wrong sources, we will learn the wrong lessons.

Why is finding reliable sources a problem with Oracle more than other technologies?

Oracle is geared toward business users, not academics or traditional programmers.

Computer science students rarely learn about Oracle and don’t focus their obsessive

curiosity on SQL or PL/SQL. Students, technology thought leaders, and hobby

programmers tend to ignore business-oriented programming languages. And it certainly

doesn’t help that Oracle is closed source, and Oracle Corporation has a history of being

hostile toward open source.

A disproportionate number of people only use Oracle to help earn a paycheck and

don’t spend time deciphering and testing the internals of their database. Not every

Oracle professional needs to be a hobby programmer, but there needs to be a minimum

number of curious people to create the right cultural norms.

There’s a knowledge gap, and that gap has been filled by an annoying amount of

tradition, appeals to authority, clickbait, and myths. We can’t reasonably test everything –

the development processes and testing techniques described in Chapters 2 and 3

require a lot of time and effort. We’ll never accomplish anything if we challenge every

assumption. But our thought leaders should be the kind of people who are always willing

to support their ideas with reproducible test cases.

We need to avoid experts who make wild claims about things they saw happen

once, but cannot demonstrate again. We need to be cautious of websites that make

extraordinary claims about Oracle but don’t provide a way to challenge those claims.

78

We learned in the previous chapters how to create scientific experiments in our

databases. When we don’t have time for experiments, we at least need to follow the

right authority and the right traditions. This chapter provides tips for how to find good

resources online and how to find good resources locally. With enough time and practice,

someday you will become one of those good resources for your community.

 Places to Go
Finding relevant, accurate information about Oracle is not as simple as Googling it.

The top results frequently have problems, especially if those results are forums or static

websites. The best resources are the official documentation, My Oracle Support, and

sites like Stack Overflow.

 The Problems with Forums
Forums are not optimal for narrow technical questions. All forums suffer from inherent

problems and limitations. Forums focus on the original users, instead of the question

and answer process itself, or the larger number of users who will read the answers years

later. Focusing too much on the original users leads to constant arguing, which means

readers have to dig through dozens of useless posts to find the real information.

Forums focus on one person, at a single point in time. But technology changes and a

good answer today may be a bad answer tomorrow. Forums that lock posts, or complain

when people reply to old posts, prevent users from curating information.

Sites like Stack Overflow have mostly replaced forums. The key to Stack Overflow

is that it doesn’t focus on a conversation between two people. The site focuses on

a question and an answer and ignores personalities and meta complaints. Stack

Overflow is a combination of a Wiki, a blog, a forum, and an aggregation site like Reddit.

Combining all those technologies makes the site difficult for new users to ask questions.

But those technologies help make the questions and answers smaller, more up-to-date,

and more readable. The real audience for a tech website are the readers, not the people

asking and answering questions. We should spend our time on websites that have the

best information, not necessarily the sites that are friendliest to new users.

On the other hand, not all problems have a simple, objective answer. Large questions

with subjective answers are a better fit for the conversational tone of forums. We can’t

always simply copy and paste code from Stack Overflow. We should occasionally take the

time to read in-depth discussions of difficult technical topics.

Chapter 4 Find reliable SourCeS

79

 The Problems with Static Websites
We should be skeptical of purely static websites. By static websites, I mean websites

that doesn’t let readers participate in the conversations. I don’t expect every blogger

to engage in debates and answer every question. But every technical website or blog

should have a way to add comments. We at least need the ability to warn each other with

comments such as “this feature is deprecated in version X.”

Oracle predates the World Wide Web, so many of the first websites about Oracle

didn’t allow comments or any other feedback mechanism. Because those websites were

built first, they got the most links and are at the top of search results.

Even technical websites will post unusual information to get traffic. It’s not as bad as

regular clickbait; I have not yet seen an article titled “You won’t believe these 8 shocking

tips for indexing your database!” But some websites post wild and unsubstantiated

performance claims. There are plenty of times when we change one irrelevant detail and

then the program runs faster. Seemingly magical performance gains happen frequently

because of issues described in Chapter 3, such as caching and execution plan changes.

When someone posts irrational performance tips, we need others to point out the

likely root cause and to demand a fully reproducible test case. But if there’s no way to

challenge that information, the mistakes may never get corrected.

It’s also important that technical websites include metadata such as publication

date and the Oracle version. A lot of technical advice expires with each new version. For

example, many PL/SQL websites still discuss cursor processing with the open/fetch/

close syntax. But that feature has been almost entirely superseded by cursor FOR loops.

Do not blindly trust nonofficial sources that don’t allow comments. Those sources

are still useful, but we need to remain skeptical about them.

 Read the Manual
The official Oracle documentation is almost always our best source of information about

the Oracle database. The documentation is so thorough that it can be intimidating at

times. It is frustrating that there is a learning curve even to learn about Oracle. But after

we understand how to navigate the documentation and read the syntax diagrams, the

official documentation will be our primary source.

The Oracle documentation library starts at this link: https://docs.oracle.com/

en/database/oracle/oracle-database/index.html. From there, we can access all the

manuals and even download the entire 500 megabyte bookshelf.

Chapter 4 Find reliable SourCeS

https://docs.oracle.com/en/database/oracle/oracle-database/index.html
https://docs.oracle.com/en/database/oracle/oracle-database/index.html

80

Unfortunately, by the time this book is published, that link will be broken. The

biggest problem with the Oracle documentation is that all the links change after a new

version of the database is released. We always want to reference the latest version, but

the latest version is the one most likely to change and have broken links.

For temporary messages like emails, it’s fine to reference the latest version. For more

long-term messages, like a blog post or a Stack Overflow post, it’s best to use the latest

version that won’t be changed again. As of 2019, the Oracle 12.1 documentation is the

best combination of modern and unlikely to change. This book won’t attempt to link to

the manual, but we can easily find the latest version by searching for the book title and

the version. For example, we can search for “Oracle SQL Language Reference 18c.”

For Oracle developers, these are the most useful books, listed in order of importance.

 1. SQL Language Reference (2,249 pages): This is the most relevant

book. Even though it’s incredibly large, it’s worth reading the

entire thing. I almost always have a browser tab open to this

manual and will use the table of contents instead of a search

engine.

 2. Database Concepts (654 pages): This book explains how the

database works, and it’s helpful to eventually read the entire thing.

Or you can at least reference it, for when you are curious about the

inner workings of Oracle. For example, if we want to know “what

exactly is REDO?”, or “what do blocks look like?”, this book is a

good place to start.

 3. PL/SQL Language Reference (850 pages): It’s worth reading this

entire book if you do PL/SQL programming. Even if you only write

SQL statements, it’s useful to scan through this book. SQL and PL/

SQL are gradually merging. The chances are good that if you’re a SQL

programmer today, you will become a PL/SQL programmer in the

future.

 4. PL/SQL Packages and Types Reference (4,898 pages): Nobody

needs to read this entire, massive book. There are many

archaic packages nobody will ever use. But there are also a few

unexpected gems that will help you someday. It’s worth at least

reading the description of every package.

Chapter 4 Find reliable SourCeS

81

 5. Database Reference (2,464 pages): You don’t want to read this

entire book. But when we need information about a parameter,

data dictionary view, or dynamic performance view, this is the

place to look.

 6. SQL*Plus® User’s Guide and Reference (372 pages): Even if you’re

not doing much with SQL*Plus, you might want to at least look

through the command reference list.

 7. Database New Features Guide (58 pages): Read this book

whenever a new version is released. Many organizations use

ridiculously old versions of Oracle, we should know what we’re

missing.

 8. SQL Tuning Guide (793 pages): Read this entire book if you do a

lot of performance tuning. “Optimizer Statistics Concepts” and the

other statistics chapters are the most useful. Most performance

issues are related to statistics problems. We should have a

thorough understanding of how optimizer statistics work and how

to gather them.

 9. Data Warehousing Guide (707 pages): This book is not just for data

warehouses. Features like materialized views and the advanced

querying techniques can be used in many contexts.

 10. VLDB and Partitioning Guide (421 pages): Read this book if

you plan to use partitioning or parallelism. This book is not just

for “very large” databases, it can also help with medium-sized

databases.

 11. Database Performance Tuning Guide (363 pages): This book is for

tuning the entire database, as opposed to tuning individual SQL

statements. In practice, tuning the SQL statements will also fix

most database performance issues, so this book is less important

than the SQL Tuning Guide.

The preceding list of books contains 13,829 pages of dense technical documentation.

Reading it all would be ridiculous, but it’s important to at least be familiar with the first

four books in the list. The answers to most of our programming questions about SQL

syntax, functions, and concepts are in the documentation.

Chapter 4 Find reliable SourCeS

82

We should also occasionally scan through the list of books. There may be a specific

book we’ll need to read, depending on the technologies we’re using. For example, if

we’re building a search engine, the Text Reference can teach us how to use Oracle Text to

index documents.

 The Manual Is Not Perfect
The documentation is not perfect, but it’s the most accurate and thorough source

available. The syntax diagrams are particularly helpful. The diagrams can be intimidating

at first, but once we get used to them, they are the perfect way to understand the syntax

options.

For example, the numeric literal format has a lot of options. It’s hard to explain those

options with words, but luckily the SQL Language Reference uses the picture shown in

Figure 4-1.

Figure 4-1. The syntax for numeric literals. From the SQL Language Reference,
copyright by Oracle Corporation.

Chapter 4 Find reliable SourCeS

https://docs.oracle.com/database/121/SQLRF/img/number.gif

83

The preceding diagram contains a surprising number of features that most

developers aren’t aware of. For example, the following are all valid Oracle literals:

select

 -.5,

 1.0e+10,

 5e-2,

 2f,

 3.5D

from dual;

The syntax diagrams are a great visual representation of the SQL language syntax. On

the documentation website, right underneath each image is a link to a text description.

Those text descriptions are also useful for understanding Oracle SQL. The descriptions

are similar to Backus–Naur form, which is a way to formally define a programming

language. If necessary, we could even use the syntax descriptions as a starting point for

recreating a full language specification. A thorough language description can help for

certain programming tasks, such as building a parser.

The following is the description for the number syntax. Compared to the diagram,

the description is not as easy for humans to read. But it is easier for programs to read.

[+ | -]

{ digit [digit]... [.] [digit [digit]...]

| . digit [digit]...

}

[[e | E] [+ | -] digit [digit]...] [f | F | d | D]

Even the manual is not perfect. The Oracle manual is not a holy text that we must

all obey. For example, take another look at the syntax diagram for numeric literals.

Notice how the “E” and “e” appear to be optional for scientific notation. According to the

diagram, 1-1 is the same as 1e-1, but that’s obviously not true in practice.

 My Oracle Support
My Oracle Support is an excellent resource that every developer should have access

to. The website is https://support.oracle.com. Unfortunately the site sits behind a

paywall, but we can’t let this paywall stop us from accessing the information we need.

Chapter 4 Find reliable SourCeS

https://support.oracle.com

84

My Oracle Support was previously called Metalink. The site is full of information that

is not available on public search engines, especially information about patches and bugs.

Accounts on that website must be associated with a valid support identifier. If we ask

around the office, we can find someone who knows our organization’s support identifier,

and we can use that identifier to request access. Alternatively, we can buy Oracle

Personal Edition for a few hundred bucks; as part of the support contract, we will get our

own support identifier and the ability to create service requests.

One of the most important features of My Oracle Support is the “ORA-600/ORA-

7445/ORA-700 Error Look-up Tool.” On the My Oracle Support website, search for “ORA-

600 tool” to find that special page. On that page we can enter the first argument of an

ORA-600 or ORA-7445 error, and the tool will usually take us to a relevant article. Most

ORA-600 error codes cannot be found on Google.

Documents on My Oracle Support frequently include descriptions of the problem,

lists of possibly related bugs, patches, and workarounds. While those documents are almost

always accurate, the version numbers tend to be overly optimistic. Don’t be surprised if the

website says “fixed in version X,” but the problem happens again in version X+1.

Creating service requests is notoriously challenging. I can’t offer you any good

advice, I still haven’t found a way to get good help for my service requests. Service

requests are a hit-or-miss process, good luck. Following the advice in Chapter 2

about creating a minimal, verifiable, and complete example can help. But not always.

Sometimes, no matter how good our test case, Oracle Support will ask us to upload tons

of irrelevant information, until we give up. My advice is that you don’t bother creating a

service request unless you absolutely need one.

 People to See
The people we work with are the best resource for our Oracle SQL questions. Coworkers

will know the context for our questions and can help us avoid XY problems. More

importantly, phone calls and face-to-face conversations are better than communicating

through emails, instant messages, and posts. In-person conversations can also help

avoid inadvertently sharing sensitive data, like accidentally emailing health data

embedded in code snippets. No matter how much we invest in digital collaboration

tools, two people in a room with a white board is still the best way to communicate.

But first we need to know who to contact about database questions. Before we

start bugging our coworkers, it might help to understand a few things about DBAs and

developers and what they can help us with.

Chapter 4 Find reliable SourCeS

85

Not all developers can help us with SQL, even if they frequently work with a

database. Application developers may use an object relational mapping tool like

Hibernate to handle database access. Business intelligence developers, data analysts,

and ETL programmers may use a proprietary language or a graphical query builder.

There are many ways to use Oracle, so don’t be surprised if you meet people who

program for Oracle databases but don’t know SQL.

Database administrators are usually the top Oracle experts wherever Oracle is

used. Unlike many other software companies, Oracle Corporation tends to focus on

administrators more than developers. Also, developers tend to spend a huge portion of

their time on business logic, whereas administrators may spend almost all of their time

on purely technical problems. For purely technical problems, an administrator with 5

years of experience may be equivalent to a developer with 10 years of experience. Yet

most database administrators cannot help us with our queries.

Oracle is a huge system and there are many ways to divide database work. Many

organizations only have operations DBAs, who work on problems like backup, recovery,

installation, account maintenance, and resolving alerts. Those topics are complicated

but may not require any SQL or business knowledge. All of the development,

architecture, data analysis, and tuning may be done by the developers.

Other organizations may have applications DBAs, or perhaps DevOps engineers.

Those administrators will develop code and may be the SQL guru we’re looking for.

Don’t give up on asking database administrators for help just because a few of them

don’t know SQL. It’s entirely possible to be a rock star DBA and have no SQL skills. Ask

around and you may find help in surprising places.

Aside from help with our queries, we have lots of other questions. The most important

thing is to create direct lines of communication. Your company may have people with job

titles like “Requirements Analyst” or “Project Manager.” But we can’t always depend on

those people. We should always be willing to directly contact a client, tester, developer,

administrator, vendor, or even some random person on the Internet. There may be a few

times when someone will get upset that you went around them, but we can’t let anyone stop

us from getting the information we need. It’s easier to ask forgiveness than to ask permission.

 Summary
We must be willing to invest our time to find good resources, both online and in person.

Now that we’ve discussed how to learn, the next chapter will focus on what to learn – the

entire stack of technologies used to write SQL.

Chapter 4 Find reliable SourCeS

87
© Jon Heller 2019
J. Heller, Pro Oracle SQL Development, https://doi.org/10.1007/978-1-4842-4517-0_5

CHAPTER 5

Master the Entire Stack
Oracle SQL development requires more than just knowledge about Oracle SQL. While

this book focuses on the Oracle SQL part, this chapter looks at the entire technology

stack we use to write SQL. This is not a generic technology how-to book, so we will look

at our technology stack through the eyes of a SQL developer. We need to invest in all of

our tools and processes, from low-level hardware to high-level project management.

Right now you may only use Oracle SQL for a small part of your job. As your SQL

skills grow, and you find yourself doing more work in the database, it pays to invest more

in the tools that support your SQL code. Even if you’re not going to be a full-time SQL

or PL/SQL developer, much of the advice in this chapter applies to any programming

environment.

 Not Just Faster
Our jobs are full of hierarchies, levels, abstractions, and technology stacks. For example,

there’s the seven layers of the OSI model for networking systems. Another example

of a technology stack is the Linux, Apache, MySQL, and PHP in LAMP. Even when

writing an email we start with letters and build our way up to words, phrases, sentences,

paragraphs, and finally the entire message.

SQL is a high-level programming language, but it’s worth revisiting the lower levels

of our technology stack. If you’re reading this book, you already know how to use those

technologies. But it’s important that we’re not merely scraping by on foundational skills.

We want to learn the fundamental technologies well enough that we don’t have to

think about them. When we write a SQL statement, we want to think of one, and only one

thing: that SQL statement. We need to master other technologies to free ourselves from

them. For example, we don’t need to learn everything about our operating system, but

we need to know enough so that the operating system doesn’t slow us down. We need

88

to make an investment: master these technologies now, so we don’t have to continually

think about them for the rest of our career.

There are many ways to define a technology stack for SQL development. This chapter

is organized according to the following list, which starts with the lowest level and ends

with the highest level.

 1. Computer science and math: The relational model was discussed

in Chapter 1. Other computer science and math topics will appear

throughout the book, especially in Chapter 16 when we discuss

performance.

 2. Hardware: Other than generic advice throughout the book, there

is no specific section to deal with hardware.

 3. Basic input/output system: The importance of touch typing is

discussed in the second section of this chapter.

 4. Operating system and supporting programs: Operating system

commands and helpful programs are discussed in the third

section.

 5. SQL and PL/SQL: This entire book covers SQL, and the

introduction discussed why we should learn it, but the fourth

section discusses why we may want to master SQL.

 6. SQL*Plus: The fifth section discusses the importance of using just

the right amount of SQL*Plus.

 7. Integrated development environment: The sixth section

discusses the tools we use for developing and querying Oracle.

 8. Worksheets, notebooks, snippets, scripts, and Gists: How to

organize our queries is discussed in the last section.

 9. Project management: There’s no specific section on this topic,

but this book frequently discusses process issues related to project

management.

Chapter 5 Master the entire staCk

89

 Typing
Typing is the most underrated skill in programming. Typing isn’t exactly the most

exciting part of our jobs, but we can benefit from mastering it.

The precise typing speed doesn’t matter. 120 words per minute is not really twice

as fast as 60 words per minute. But 60 words per minute is more than twice as fast as 30

words per minute, if we’re touch-typing instead of looking at the keyboard. We must be

able to type as fast as we can think. Then we can concentrate on what matters and not

constantly lose our train of thought. If we can type properly, we won’t be tempted to take

shortcuts, like use one-letter variable names, or avoid adding comments. If we spend

most of our work day on a keyboard, then we really ought to master it.

Learning how to properly type isn’t difficult anyway. If we already have typing skills,

it’s trivial to find typing tutorials online to help us improve. For example, I learned most

of the keyboard in school, except for the numbers. I found an online tutorial, learned

which finger went on which number, and practiced for a few minutes a day. Pretty soon

I was able to type numbers without looking at the keyboard anymore.

We don’t need to learn the optimized Dvorak keyboard layout, although that layout

may help with repetitive strain injuries. And we don’t need to enter typing competitions.

Just a few minutes a day and we can quickly fill in any gaps in a fundamental skill.

Learning relevant keyboard shortcuts will also help us work faster and spend

more time thinking about things that matter. At the operating system level, we should

be able to cut, copy, paste, switch between windows, open menus, switch tabs, and

move between words, lines, and pages, without looking at our keyboard. And it’s worth

learning or configuring keyboard shortcuts for popular programs, like our integrated

development environment.

If you want to challenge yourself to learn the keyboard better, hide the mouse for a day.

For most programming tasks, using the mouse only slows us down. Browsing the Web will

be painful, but working without a mouse will make us better at most of our programs.

 Operating Systems and Supporting Programs
Advanced SQL development requires knowledge of many other programs. We have to

run our SQL on different systems and in different contexts. We need programs to help us

interpret, manage, and share the results. This section lists many programs and skills we

should be familiar with.

Chapter 5 Master the entire staCk

90

 Operating Systems
When developing SQL, we may have two operating systems to deal with – the client that

creates the SQL and the server that run the SQL. Even if there’s a GUI for every operating

system task, it’s worth understanding the command line. The command line is more

powerful and faster, after the learning curve. If you’re not familiar with your server or

client operating systems, try to learn one new command a day. We don’t necessarily

need to write shell scripts, but we can at least benefit from being able to navigate the

file system and move things around.

 Text Editors
Text editors are important, even if we do most of our work in an integrated development

environment. SQL development involves lots of data, and much of that data starts as

text. Every programmer needs to use a text editor more powerful than Notepad. There

are plenty of free options for all platforms, like Notepad++, Notepad2, vi, etc. If we have

corporate IT policies preventing us from installing programs, we can download an

executable-only version. Most graphical text editors are easy to figure out, we just have

to spend a few minutes exploring toolbars and menus. Unix editors, like vi, can be

more challenging. Luckily there are online video game tutorials that teach vi, such as

https://vim-adventures.com/.

Any decent text editor will support regular expressions. Regular expressions are

invaluable to data processing and we should use them often. For example, a common

SQL problem is converting lists of values into SQL data. Instead of manually modifying

the data, regular expressions can make the data conversion much faster.

Imagine a large text file with comma-separated data. We want to turn the following

file of data into a table of data:

a,1

b,2

c,3

Our goal is to convert the preceding text into the following SQL statement:

select 'a',1 from dual union all

select 'b',2 from dual union all

select 'c',3 from dual

Chapter 5 Master the entire staCk

https://vim-adventures.com/

91

With regular expressions we can convert the data in only four small steps. Open the

editor’s find and replace dialog, usually with Ctrl+F. Enable regular expression mode,

usually by clicking a check box. Then make four replacements:

 1. Replace “^” with “select '”

 2. Replace “,” with “',”

 3. Replace “$” with “from dual union all”

 4. Manually remove the last “union all”

Regular expressions are cryptic and confusing at first. But they are powerful tools for

finding and changing data. They can also be used in Oracle SQL through the REGEXP_

functions. Chapter 7 will briefly discuss those functions and the regular expression

syntax.

 Comparison Tools
Comparison is a core part of SQL development. If we stick to the relational model, most

of our comparisons can be done with SQL joins and predicates. But inevitably we must

compare semi-structured data, like text files. We need a way to quickly compare large

amounts of text and drill down to the precise byte differences. There are many free and

open source programs to compare data, such as WinMerge. Most version control clients

also have the ability to compare files.

For an example, text comparison programs can help with comparing long CREATE

TABLE statements. Let’s use the simple example from Chapter 2, where we saw how weird

the output from DBMS_METADATA.GET_DDL can be. The following commands are identical,

except that the table TEST2 is created with the option PCTFREE 0. The difference is easy to

spot when we’re creating the tables.

create table test1 as select 1 a from dual;

create table test2 pctfree 0 as select 1 a from dual;

select dbms_metadata.get_ddl('TABLE', 'TEST1') from dual;

select dbms_metadata.get_ddl('TABLE', 'TEST2') from dual;

But when we compare the output, there’s so much worthless information it’s hard to

find any meaningful differences. (As discussed in Chapter 2, this abundance of metadata

is why we want to save the handmade SQL statements, not the system-generated ones.)

Chapter 5 Master the entire staCk

92

The differences between the two tables become obvious in a comparison tool, and we

can tell exactly which characters are different in Figure 5-1.

 Reporting Tools and Excel
IDEs are great at retrieving results from SQL queries, but those initial results don’t always

look pretty. Spreadsheets and reporting tools can help us preset the results in a better

format. Reporting software and business intelligence are large topics and outside the

scope of this book. But for many purposes, Microsoft Excel is good enough to enhance

our results.

Most IDEs let us export data to Excel with just a few clicks. In Excel, we should learn

how to do things like sort, filter, remove duplicates, create a header row, create simple

formulas like =SUM(A1:A100), and create simple charts. We can learn the basics of any

spreadsheet program in just a few hours. The presentation of our data matters more

than we think. Before sharing data with nontechnical people, we should at least put the

results in Excel.

We need many more programs for our daily work, like browsers, email clients,

terminal emulators, version control, etc. There’s no need to discuss those programs here,

since there’s nothing SQL-specific about those programs. But the theme of this chapter

applies to those programs as well: invest time to learn about our tools.

Figure 5-1. Using WinMerge to compare DBMS_METADATA.GET_DDL output for two
similar tables

Chapter 5 Master the entire staCk

93

 SQL and PL/SQL
If you’re reading this book, you’re already dedicated to learning SQL. But it’s worth

briefly discussing why it is beneficial to spend so much time to master a single language.

We need to justify this investment to ourselves, our coworkers, and our employers.

Developers frequently say that it’s easy to learn a new programming language.

Learning a programming language is only easy in three cases: the rare genius who can

learn anything quickly, a language without much depth, or a developer who doesn’t care

about writing average code.

People undervalue expertise. Sometimes we forget how painful it is to master a

skill. Think about all the words in this sentence – when and where did we learn them?

We can’t remember, but our parents and teachers can tell us stories about our years

of struggle to master a language. Sometimes we don’t value expertise because of the

Dunning–Kruger effect; we overestimate our skills because we don’t even know enough

to accurately judge our knowledge.

Becoming an expert can take a long time. 10 years is a common estimate, but it’s

impossible to find an exact number. It takes a long time to get good enough at something

to be able to do it without thinking about it. It takes a long time, and intentional practice,

to know by intuition when our code isn’t right. Those 10 years of experience can’t be one

year repeated ten times. We need to work hard, continually improve, and put ourselves

in situations where we are not the smartest person in the room.

Oracle SQL is much larger than the average programming language. Oracle’s

English-like syntax makes it simpler at first and makes it easier to read. But putting

so many features in the syntax makes the grammar huge. Oracle SQL has over 2400

keywords, whereas most programming languages only have a few dozen.

Mastering Oracle SQL requires much more than just learning a single programming

language. Aside from SQL, we’ll also want to know at least enough PL/SQL to glue

together our SQL statements. PL/SQL is the best procedural language for running

SQL – the languages integrate seamlessly and optimally. We also need to learn the

equivalent of another operating system – the Oracle environment and architecture. And

we need to learn a set of frameworks – the DBMS_* packages and other utilities.

The extra keywords, functionality, and concepts are why we must spend more time

to master Oracle SQL than a traditional programming language. The extra work, and

extra knowledge, can justify our time and money spent on things like training and going

to conferences.

Chapter 5 Master the entire staCk

94

Is it worth the time and money to become an expert? In many cases, the answer

is no. Most of our projects don’t significantly benefit from being great instead of

merely good. Career-wise, the jack-of-all-trades developers usually do better than the

specialists, especially with the industry shift toward DevOps. For me, it’s a personal

choice to be an expert in one language instead of being OK in two languages. I’m sick of

all the mediocre software in the world. If we want to create amazing programs, we must

spend the time to become experts.

 SQL*Plus
SQL*Plus is a great tool but only in specific contexts. SQL*Plus is the simplest way to use

the database. That simplicity is an advantage for scripting, demos, troubleshooting, and

when we can’t use a graphical tool. But SQL*Plus will stunt our growth as developers if

we use it for development, debugging, and ad hoc querying.

 When We Should Use SQL*Plus
SQL*Plus is great for scripting installations, as described in Chapter 2. And it’s great for

building reproducible test cases, as described in Chapter 3. The simple text-only format

leaves nothing hidden and makes the program helpful for troubleshooting. There are

times when we don’t have a desktop environment available, and SQL*Plus is our only

choice. For some administrative tasks, we only have a terminal available. Even when

we have a remote desktop, sometimes the connections are too slow to use graphical

programs, and we’re stuck with the command line. We’re going to have to use SQL*Plus

sometimes, so we might as well get used to it.

When we use SQL*Plus, we must use the real thing. Many IDEs have a built-in

SQL*Plus clone that we should avoid. Those clones are always missing important

features, and sometimes they’re missing important bugs. The main benefit of SQL*Plus

is the portability and compatibility across different platforms and versions. If something

works in your SQL*Plus, but fails in mine, one of us isn’t using the real thing. I’ve seen

many deployments fail because a developer used a SQL*Plus clone that didn’t have

the 2,499 character-per-line limit. The code worked on their machine, but failed on

production when a real SQL*Plus was used. Those limits are annoying bugs, but we need

to be aware of limits as early in the development cycle as possible.

Chapter 5 Master the entire staCk

95

 When We Should Not Use SQL*Plus
SQL*Plus is no longer adequate for our day-to-day development work. There are

many mature integrated development environments that can significantly improve

our productivity. Text is better than pictures for programming languages, but with

a graphical IDE, we can have multiple windows of code and metadata, improved

visualization of code, and quick access to hundreds of powerful options.

For writing queries, we need to be able to quickly run and view the results of different

parts of a query. SQL*Plus makes it hard to run inline views or subqueries – we can’t

simply highlight code and hit the run button. And the command-line formatting of

SQL*Plus makes it almost impossible to meaningfully view the results of complex or

ad hoc queries. If we already know the columns, and only select the columns we want,

and set formatting options ahead of time, we can view a small set of columns fine in

SQL*Plus. But that’s an extremely limited way of using a database. We should be able to

effortlessly view all the data in our tables.

It’s ridiculous to think we’re going to remember what all the values in our databases

look like and be able to select the relevant columns each time we query a table. When

we use SQL*Plus for ad hoc queries, we’re limiting ourselves to only the few things we

remember well. We’ll never improve if we limit ourselves to what we already know.

For example, during performance troubleshooting it’s common to look at the

view V$SQL. We rarely know what the problem is ahead of time, we’re just looking for

something weird, so we need to look at everything. When we run the following query

in SQL*Plus, the output is a worthless mess. I’m not even going to show the output, my

conscience won’t let me kill a tree to print gibberish.

SQL> select * from v$sql;

When we run the preceding query in a graphical user interface, like Oracle SQL

Developer, the results are infinitely more usable. The results in Figure 5-2 are not exactly

pretty, but we can scroll back and forth and more easily explore and understand the data.

Chapter 5 Master the entire staCk

96

We live in an information age and we need tools that can display large amounts of

information. Many database professionals never reach their full potential because they

refuse to use modern tools. Those old-fashioned developers also slow down the rest of

us when we have to dumb down our programs to support 72 characters per line.

Using an IDE is one of the few areas where we need to convince our coworkers

to change their habits. We don’t want to start pointless flame wars about Oracle SQL

Developer versus Toad. But when we see someone stuck in the twentieth century, doing

everything on the command line, it’s worth trying to gently convince them to upgrade

their tools.

The program SQLcl may someday replace SQL*Plus. But that day is decades away. The

new Java version of the command-line program has nice advantages, like auto- completion

and new commands. But since the program is new, and requires the most recent version

of Java, and since many Oracle shops are conservative, it will be a long time before we can

safely assume every server has SQLcl available. And SQLcl is still not nearly good enough

to be used as a full IDE for development.

 Integrated Development Environment
Our integrated development environment is vital to writing advanced SQL queries, and

we should invest a significant amount of time learning these tools. Different IDEs have

a wide variety of features, and this book does not assume you are using one specific

program. This chapter will discuss the core features available in all the major IDEs, as

well as a brief comparison between the top 3 Oracle SQL IDEs.

Figure 5-2. A simple data dictionary query in Oracle SQL Developer

Chapter 5 Master the entire staCk

97

 Learn an IDE
The best way to learn an IDE is to watch an expert use it. When we watch someone use

their IDE, there will be moments when we’re following along and then suddenly they’ll

leap ahead of us. When we lose track, ask the other developer to explain their magic

trick. Most developers will be happy to share their IDE secrets with someone else. If we

never ask, they may never help us. There are many personal preferences in IDEs, and

developers are nervous about trying to explain their favorite program to others, because

they want to avoid disagreements. We should signal to those experts that we’re willing

to learn all the tips and tricks we can, even if it does get us into the occasional argument

about tabs versus spaces.

The most important thing to know about our IDEs is that there is always a way to

change anything we want. Don’t like the default fonts and colors? Change them. Find

it tedious to accomplish a repetitive task? Create a keyboard shortcut or a macro to

automate it. Wish the tabs were ordered differently? Re-order them. Don’t like the cut of

its jib? Look online and find a plug-in to alter the jib. We should never have to settle for

anything with our IDE.

This book is IDE agnostic and will not go into details about how to learn each

IDE. But we should learn how to do at least the following things in our IDE: run the

SQL at the cursor (learn the shortcut for running commands, and find a way to run SQL

without having to highlight anything), view database objects in different schemas, open

and change file system objects, create new database objects, view the DDL behind an

object in the editor (usually by clicking the text), change syntax and formatting rules

(such as changing tabs to spaces), change the NLS properties (such as the date format),

debugging (how to quickly set breakpoints, step in, step out, etc.), run saved scripts

or snippets, code navigation (such as right-clicking objects inside a package to go to

different sections), refactor variable names, and much more. If any of those features are

new to you, spend some time in your IDE to learn them. By learning how to run those

tasks quickly, we can run more SQL statements, shorten our feedback loop, and improve

our code faster.

If you’ve never looked through your IDE’s options before, stop right now and spend

10 minutes. Open the properties or settings menu, right-click in different windows, and

look through the pop-up menus, just spend some time looking around. Looking through

the menus is faster than reading the manual, and I guarantee you’ll find at least one

useful setting you’ll want to change.

Chapter 5 Master the entire staCk

98

 When Not to Use an IDE Feature
We don’t want to use all of the features of our IDE. Some developers use an IDE as

a crutch to create code and can only program with point-and-click wizards. But just

because those wizards exist doesn’t mean we all have to use them. For advanced

developers, the IDE is like a text editor on steroids. For example, we don’t have to use the

“New Table” wizard in our IDE to create a table. We can still create tables with text, and

our IDE will help us with things like syntax highlighting, auto-complete, and much more.

IDEs often contain features that may look useful or pretty but can be dangerous.

As previously discussed, we should avoid our IDE’s imitation version of SQL*Plus. We

should also avoid features that let a single instance of the program connect to multiple

databases at the same time. One window should only be used for one connection, with

the connection alias prominently displayed at the top of the window. Developers who

use multiple tabs, each connected to a different database, inevitably run commands on

the wrong database. We must configure our IDEs so that it is always blindingly obvious

which database we are connected to.

 Oracle IDE Comparison
We don’t always have the ability to choose our IDE. Our company may have already

purchased one, or our projects may require a specific tool. If we’re lucky, we’ll have a say

in which program we use. And if we’re doing hobby programming at home, then we’ll

definitely need to decide for ourselves. Use Table 5-1 to help decide which program to use.

Table 5-1. Simple Comparison Between the Most Popular SQL IDEs

Oracle SQL Developer PL/SQL Developer Toad

Cost Free Cheap expensive

Features Better Good Best

Quality Good Best Better

It’s impossible to say that one IDE is always better than another. The best tool

depends on personal preference, where the tool will be used, the budget, etc.

Oracle SQL Developer is free and is installed by default with all Oracle clients. If

Oracle SQL Developer is missing, it’s trivial to install it – just download and run a file,

Chapter 5 Master the entire staCk

99

no admin privileges required. Because of cost and ease of installation, Oracle SQL

Developer is the most common choice. There will be times when Oracle SQL Developer

is the only choice, so it’s worth becoming at least familiar with it. But it’s the stereotypical

slow Java program, and many of the features don’t feel polished. Like most Oracle

programs, Oracle SQL Developer chooses feature quantity over quality. While Oracle

SQL Developer has many features that look cool, it’s missing critical not-so-obvious

features, like being able to run two queries simultaneously in different tabs.

Quest’s Toad has the most features and is part of a large ecosystem of tools sold by

Quest. If we have a large and complex work environment, full of data analysts, testers,

DBAs, and developers, then we should definitely look at Toad. The biggest downside is

the massive cost.

Allround Automations’ PL/SQL Developer is my personal favorite. It’s cheap,

fast, and high-quality. PL/SQL Developer doesn’t have as many features as the other

programs, but what it does, it does better. PL/SQL Developer is not free like Oracle SQL

Developer, but an unlimited site license is cheaper than a single Toad license.

Comparing IDEs is difficult and involves a lot of personal preferences. Many people

will strongly disagree with my analysis. As long as we all have an IDE, and know how to

use it, we’ll be fine.

 Worksheets, Notebooks, Snippets, Scripts, and Gists
Our whirlwind tour of the Oracle SQL development stack has gone from low-level

theories to high-level integrated development environments. Most developers would

stop at this point. But there’s one final, important piece that most SQL developers

forget – we need to organize our SQL statements. We need to store the files in a

convenient, backed-up, unforgettable location. And we need to write our ad hoc SQL

statements in worksheets and notebooks, not old-fashioned scripts.

 Get Organized
Most of our SQL will eventually be stored in a program. Organizing SQL inside programs

is important, but internal code structure is not what we’re discussing here. This section is

about the ad hoc SQL statements and worksheets that we use to support our day-to-day

work. As we learn more about SQL, we will build a large library of helpful statements and

worksheets. Our library may come in handy hundreds of times, and we may be able to

carry that knowledge with us for many years.

Chapter 5 Master the entire staCk

100

The first step toward building a library of statements is to create a memorable

location to store this information. Sadly, very few SQL developers do this critical step,

and it’s painful to watch them struggle to remember where they put a statement they

just built yesterday. The details of our filing system are not important, but we must use

something.

For me, building a SQL library is as simple as three separate folders. One folder for

my worksheets (ad hoc SQL statements that I may need in the future), one folder for

version-controlled repositories, and another folder for temporary files that I’ll only need

in the near future. In Windows 7, we can create folder favorites, and those favorites will

always appear in every open or save dialog. Figure 5-3 shows an example of a simple

structure.

 Worksheets
Now that we know where to store the files, how exactly do we store our SQL statements

in them? Script management is another area where Oracle’s history does more harm

than good. 40 years ago it was pretty cool to be able to save a single command in a single

file and then run that file. Many DBAs have a large directory of SQL*Plus scripts they

frequently reference for common problems. Those scripts contain one SQL statement,

perhaps with arguments passed to the file, and a small number of outputs.

But those single-purpose scripts have all the problems discussed in the “SQL*Plus”

section of this chapter. It’s hard to predict the relevant columns ahead of time, and it’s

hard to get those scripts to flow together.

Figure 5-3. Example of a Windows Explorer favorite list

Chapter 5 Master the entire staCk

101

The best way to store ad hoc SQL statements is in a notebook or worksheet. A

worksheet is a simple concept – store multiple, related SQL statements in a single file.

Put the statements in a meaningful order, add comments, load the worksheet into an

IDE, run the statements one at a time, and view the results. We may need to use the

results and plug them into statements further in the worksheet.

The idea of worksheets and notebooks has really taken off in data science and

math programming environments. There are a growing number of programs that let us

combine code, word processing, and visualizations. Figure 5-4 shows an example of an

IPython Notebook. (You don’t need to understand the math.)

Figure 5-4. “IPython Notebook interface” by Shishirdasika is licensed under CC
BY-SA 3.0

Chapter 5 Master the entire staCk

https://commons.wikimedia.org/wiki/User:Shishirdasika
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/

102

The most popular Oracle SQL IDEs don’t look quite as nice as the picture in

Figure 5- 4. But most of the value of a worksheet is being able to run multiple statements

in one file. It doesn’t matter much if the worksheet is not perfectly formatted.

For example, Figure 5-5 shows a simplified view of my performance worksheet in

action. The file is stored in my worksheets folder and is easily opened by an IDE. This

is the file I use when there is a performance problem on a live system. The file contains

steps to find slow queries, investigate them, and hopefully fix the underlying issue. Don’t

look too closely at the details, the actual steps aren’t important. We all have a different

process for performance tuning. What’s important is that we must have some sort of

process. And our worksheets must be easy to find, run, and incrementally modify.

The following worksheet is not a script and we don’t want to run all the commands

every time. (Make sure your IDE is configured to only run one statement at a time when

you press F8, F9, Ctrl+Enter, or whatever the shortcut is.) Worksheets are a pseudo-

automated sets of steps to help troubleshoot complex problems. Depending on the

output of the first step, sometimes we’ll need to run the second step, and sometimes we

can skip to the third step. It’s not a fully automated program, it’s more like a mind map

for performance problems.

Figure 5-5. Example of a SQL performance worksheet

Chapter 5 Master the entire staCk

103

Storing worksheets in a public repository like GitHub is a popular option. GitHub

Gists may be a good choice, since they are geared toward storing a single file. Oracle’s

livesql.oracle.com has a good notebook-like interface. Unfortunately, Oracle LiveSQL

only runs against a sample cloud database and cannot connect to our real databases.

Saving worksheets online is not always possible. Many companies won’t let

employees release code online without going through a long approval process. Releasing

open source software is great, but our ad hoc worksheets aren’t very re-usable by

other people anyway. In this case, flexibility is more important than openness. Storing

worksheets locally is good enough.

Caution Do not continue until you have created a convenient place to store your
sQL worksheets.

Most IDEs allow us to save and run snippets. It’s convenient to be able to right-click

and instantly get a SQL statement. Snippets can be useful for tiny tasks, but they are still

no replacement for powerful worksheets.

 Summary
Before we dive into advanced Oracle SQL features, we need to build and learn a

technology stack that will fully support us. These supporting technologies aren’t always

very exciting, but it’s important to master the low-level stuff so we can focus on what

matters. If we decide to invest more in learning SQL, then it is also worthwhile to invest

in things like typing skills, operating systems and programs, SQL*Plus, IDEs, and SQL

worksheets.

Chapter 5 Master the entire staCk

PART II

Write Powerful SQL
with Sets and Advanced
Features

107
© Jon Heller 2019
J. Heller, Pro Oracle SQL Development, https://doi.org/10.1007/978-1-4842-4517-0_6

CHAPTER 6

Build Sets with Inline Views
and ANSI Join Syntax
We’re almost ready to dive into advanced SQL features. In Part I we built a solid

foundation for SQL programming. Before we start using advanced features, we need to

discuss how to construct our SQL statements.

The best way to write SQL statements is to create nested sets using inline views and

the ANSI join syntax. First, we need to discuss common SQL problems – spaghetti code

caused by the old join syntax and too much context. Sets, chunking, and functional

programming can help us create simpler queries. We will combine those three concepts

and implement them with inline views. Inline views will be the small, independent

building blocks for our SQL statements. The ANSI join syntax will help us take those

inline views and construct large, but understandable, queries. Finally, we’ll put those

ideas together to build a large example and learn something from our space data set.

 Spaghetti Code from Nonstandard Syntax
With the old join syntax, we throw all the tables in a comma-separated list and join the

tables together later. That programming process leads to code that is hard to read, hard

to debug, prone to accidental cross joins, and nonstandard. The old join syntax is still

valid, and occasionally useful, but should be used sparingly.

As a quick refresher, the following code shows the old join syntax and the newer

ANSI join syntax. (The examples use * for brevity, but most of our production queries

should explicitly name the columns we need to use.)

--Old join syntax we should avoid.

select *

from launch, satellite

108

where launch.launch_id = satellite.launch_id(+);

--ANSI join syntax we should embrace.

select *

from launch

left join satellite

 on launch.launch_id = satellite.launch_id;

 Hard to Read Old Syntax
The first problem with the old join syntax is that it separates the tables from their join

conditions. The tables are thrown together in a comma-separated list and then hooked

together later. Separating tables from join conditions makes it harder to tell how the

tables are connected. In theory, we can construct the list of tables in a meaningful order

and then follow that same order when we write the join conditions. In practice, that

orderly development process never happens and we end up with a disorganized query

that’s hard to read.

When writing, we want to list items in the order they are introduced. For example, we

would not write an out-of-order paragraph like this:

The Three Stooges are Moe, Larry, and Curly. Larry was played by Louis Feinberg,

Curly was played by Jerome Lester Horwitz, and Moe was played by Moses Harry Horwitz.

We should follow the same rule with our tables. We should list and join tables in the

same order. The table order doesn’t matter to the compiler, the compiler can rearrange

tables however it wants. (In ancient versions of Oracle, or in extremely rare cases, the

order of tables can affect performance. But those exceptional cases should not dictate

the way we write our code today.) Although the computer doesn’t care about the order,

people are the true audience. The old join syntax fails us because it promotes a bad style.

There are N! ways to order and display a list of tables. That means there is an

impossibly large number of different ways to join a large list of tables. When we see a

comma- separated list of tables, we have no idea what to expect for the rest of the query.

Throwing a bunch of tables onto a screen and then drawing lines between them

is a poor way to think about joining tables. Our minds have a hard time processing

everything at once. The old syntax misleads us into creating SQL statements like the

 nightmarish Figure 6-1. The Oracle programming world is full of ugly SQL statements

and they drag down the whole ecosystem. Those ugly SQL statements are why so many

Chapter 6 Build SetS with inline ViewS and anSi Join Syntax

109

programmers hate Oracle SQL, and why I’m spending so much time trying to convince

you to change your SQL syntax.

 Hard to Debug Old Syntax
Debugging is difficult and it’s especially difficult with the old join syntax. When we

debug large SQL statements, we want to test one small piece at a time. If we don’t write

our queries properly, there won’t be an easy way to isolate and run small pieces.

This debugging problem doesn’t show up in most SQL tutorials and books. Good

examples omit needless code and are small. Most SQL examples only need one or

two tables. When there are only two tables, the join syntax doesn’t matter. Many SQL

developers learn techniques and styles that work fine with small examples but do not

scale to large queries.

When our queries grow to three tables or more, the problems become apparent.

After you’ve read this book, you should be willing to create SQL statements with much

more than three tables.

For example, let’s say we want to find the number of engines used per rocket launch.

Rockets can have multiple stages, and each stage has a number of engines. To find this

information, we need to join LAUNCH, LAUNCH_VEHICLE_STAGE, and STAGE. There’s an

Figure 6-1. The wrong way to think about SQL joins

Chapter 6 Build SetS with inline ViewS and anSi Join Syntax

110

intentional mistake in the following join, next to the exclamation mark. The query joins

the stage number, when it should use the stage name.

select launch.launch_tag, stage.stage_name, stage.engine_count

from launch, launch_vehicle_stage, stage

where launch.lv_id = launch_vehicle_stage.lv_id

 and launch_vehicle_stage.stage_no /*!*/ = stage.stage_name

order by 1,2,3;

The preceding error is a simple mistake and easy to fix. If we’re having problems

between LAUNCH_VEHICLE_STAGE and STAGE, we want to debug the statement without

LAUNCH in the query. But to pull LAUNCH out of the preceding query, we have to rewrite

most of it. There are only three lines, so rewriting is not a big deal in this example. But

in the real world, when there are dozens of tables, troubleshooting a query like this is

 painful. (A more realistically sized query will be shown at the end of this chapter. For

now I want to keep things simple.)

When we’re building programs, we need instant feedback so we can correct our

mistakes as soon as possible. When we throw together a bunch of tables and join them

together later, we’re delaying the time until we find our mistakes. Then we may not

notice the problem until there are dozens of tables and it’s harder to guess where the

problem is. To make debugging easier, we need to use a more modular and iterative

process.

 Accidental Cross Joins in Old Syntax
The old-fashioned join syntax frequently leads to unintended cross joins, also known

as Cartesian products. These cross joins cause wrong results and horrible performance.

Cross joins might run fine in development but fail horribly in production, when the data

is larger.

Cross joins multiply the number of result rows by the number of rows in the extra

table. A bad cross join can effectively stop the entire database from working. When

Oracle generates a ridiculous number of rows, the rows must be stored on disk, in a

temporary tablespace. If the relevant temporary tablespace is shared with another

application, that application won’t have any space left to sort or hash data. Then the

application queries will either immediately raise an exception or go into a suspended

state and wait for more space. When DBAs see suspended session errors, they often

Chapter 6 Build SetS with inline ViewS and anSi Join Syntax

111

immediately add more space. But adding a 32 gigabyte file won’t help when Oracle is

trying to write an exabyte of junk data. Those extra temp files are why many databases

end up with uselessly large temporary tablespaces.

The old join syntax makes unintentional cross joins much more likely to happen.

When we write out a large list of tables, it’s easy to forget about one of them later. The

query syntax is still valid and the compiler won’t complain. It’s hard to catch these

mistakes, especially with large queries. In the following example, if the relevant code

wasn’t bold, would we have noticed that the table ENGINE is not joined to anything?

select launch.launch_tag, stage.stage_name, stage.engine_count

from launch, launch_vehicle_stage, stage, engine

where launch.lv_id = launch_vehicle_stage.lv_id

 and launch_vehicle_stage.stage_no /*!*/ = stage.stage_name

order by 1,2,3;

There’s no way to ban cross joins – the syntax is sometimes necessary. And we can’t

catch all bad cross joins with testing, because cross joins can happen on production

with ad hoc queries. Converting to the ANSI join syntax will almost completely eliminate

accidental cross joins.1

In addition to under-joining data with accidental cross join, the old join syntax also

makes it easier to over-join data by missing the outer join operators. If we left join table

A to table B, then we also want to left join table B to table C. A common mistake is to use

a left join between A and B and an inner join between B and C. That mistake effectively

turns the outer join into an inner join. With the (+) operator, and disorganized join

conditions, that mistake is easy to make in the old join syntax.

 Nonstandard but Still Useful
The old join syntax was created before joins were fully standardized in SQL-92. In the

early days, every database had to create their own style of joins. All relational databases

can use the list-of-tables style for inner joins, but there are many different ways to

represent outer joins. In Oracle, the outer join is marked by adding the (+) operator to

the side of the join that is optional.

1 It’s rare, but still possible to have an accidental cross join with the ANSI join syntax. For example,
a cross join happens if we join a multicolumn foreign key by only one column.

Chapter 6 Build SetS with inline ViewS and anSi Join Syntax

112

Writing queries with the (+) operator means those queries won’t translate to

other databases. But the lack of portability is not a big deal. In practice, if we’re taking

advantage of useful Oracle features, our queries will not be portable anyway. The (+)

syntax doesn’t allow full outer joins, but full outer joins aren’t common anyway.

There are times when the old join syntax is required. We still need to be familiar

with the (+) operator and be able to translate between the two syntaxes. There are rare

performance problems and syntax bugs that can be solved by switching to the old syntax.

And bitmap join indexes and fast refresh materialized views require the old syntax. But

those exceptions shouldn’t dictate our style.

 Too Much Context
The wrong SQL features create too much context and too many dependencies within our

SQL statements. We want to create our SQL from small, independent blocks of code and

connect those blocks as simply as possible. We should avoid features that increase the

context, like correlated subqueries and common table expressions.

 The Importance of Limiting Context
Context is king. We cannot understand code in isolation. We need to see the big picture

and all the metadata. Code is more easily understood when we know who wrote the

code, why they wrote the code, and the code before and after the block of code we’re

looking at. Context gives us a deeper understanding of whatever we’re reading.

But programming context is different. In programming, context refers to the

background state of our programs. That information can be helpful, but it’s more likely to

cause problems when unexpected side effects change things in the background. Code is

not literature with multiple valid interpretations. Our code should be brutally plain with as

little background information as possible. When programming, the context is more likely

to play tricks on us than to help us. Programming context is more like the court jester.

When we have a problem with a SQL statement in a program, we want to copy that

statement into our IDE and run it independently. Then we’ll want to run small pieces

of the query to look for the bug. But context gets in the way. The SQL statement might

depend on our session’s uncommitted data, bind variables based on local and global

variables, objects, pipes, operating system files for external tables, etc.

Chapter 6 Build SetS with inline ViewS and anSi Join Syntax

113

Good programming practices, such as avoiding global variables, can reduce

the context. It’s inevitable that queries have at least some context but we can still

minimize it. We especially want to minimize the context within our queries. Intra-query

dependencies must be kept to a minimum. In practice, reducing context means avoiding

correlated subqueries and common table expressions.

 Avoid Correlated Subqueries
Correlated subqueries are subqueries found in the SELECT and WHERE clauses that

reference another part of the query. Correlated subqueries are not always evil, but they

are over-used and can make our lives harder. For example, let’s rewrite the query for

finding the number of engines used per launch. Instead of joining to the STAGE table

directly, let’s create a correlated subquery:

select launch.launch_tag, launch_vehicle_stage.stage_name,

 (

 select stage.engine_count

 from stage

 where stage.stage_name = launch_vehicle_stage.stage_name

) engine_count

from launch

join launch_vehicle_stage

 on launch.lv_id = launch_vehicle_stage.lv_id

order by 1,2;

The correlated subquery in the preceding example increases the complexity of the

statement. At first glance, the subquery appears to isolate STAGE from the rest of the

query. But the correlated subquery doesn’t create an independent block of code because

of the link between the two STAGE_NAME columns. Information is now passing in two

directions, and we can’t simply highlight and run the subquery to understand it.

This example doesn’t suffer greatly from the correlated subquery, because this

example is simple enough to keep in our head. But in a larger query, correlated

subqueries make it impossible to understand the query in small pieces. The preceding

example used a correlated subquery in the SELECT clause, but the problem is just as bad

in the WHERE clause.

Chapter 6 Build SetS with inline ViewS and anSi Join Syntax

114

 Avoid Common Table Expressions
Common table expressions are also a useful feature, but they are frequently over-used

and needlessly increase the context of a query. Common table expressions are also

known as the WITH clause, or subquery factoring. For example, the following query

returns recent exploration and deep space missions.

with launches as

(

 select *

 from launch

 where launch_category in ('deep space')

 and launch_date >= date '2000-01-01'

)

select *

from launches

join satellite

 on launches.launch_id = satellite.launch_id;

There are small advantages to using a common table expression in the preceding

query. Common table expressions flow from top to bottom, which is the more traditional

direction of program flow. The common table expression separates the LAUNCH

predicates and makes it easier to test just those two predicates. But the common table

expression doesn’t truly create two separate pieces. We still cannot highlight the bottom

half of the query and run it in our IDE. The entire query is still all tied together and must

be understood as a single piece. The common table expression increased the amount of

context.

There are many times when correlated subqueries and common table expressions

are useful. Sometimes correlated subqueries just seem to make sense, and they may

improve performance with features like scalar subquery caching. If referenced more

than once, a common table expression can reduce the amount of code and possibly

improve performance by materializing the results. But if we want to create small,

modular code, we need to use different techniques.

Chapter 6 Build SetS with inline ViewS and anSi Join Syntax

115

 Sets, Chunking, and Functional Programming
to the Rescue
Enough about the problems with traditional SQL syntax, let’s talk about solutions. How

do we write powerful SQL statements but make them readable? First, we need to think

about SQL statements as nested sets, instead of the mess of linked tables we saw in

Figure 6-1. Chunking can help us manage those sets. Applying functional programming

ideas can help us simplify our code.

 Sets
Thinking in sets helps us understand and visualize our SQL statements. Most SQL guides

emphasize set-based processing to help us write faster SQL. Indeed, the performance

benefits are enormous and are discussed multiple times throughout Parts III and IV

of this book. But this chapter focuses on how set-based thinking can also help us write

more readable SQL.

A mathematical set is simply a collection of objects, an amorphous blob of stuff. We can

list a set as text, like A = {1, 2, 3, 4}. It’s also helpful to visualize sets, like in Figure 6-2.

Figure 6-2. “An example of a set.” by Stephan Kulla is licensed under CC0.

Sets can contain other sets. Nesting sets is a powerful way of representing any kind

of data. There are many ways to visualize sets, such as the Venn diagrams from Chapter 1

or the diagram in Figure 6-3. The exact way of thinking about sets is unimportant. It only

matters that we have a solid mental model of sets.

Chapter 6 Build SetS with inline ViewS and anSi Join Syntax

https://commons.wikimedia.org/wiki/File:Example_of_a_set.svg
http://kulla.me/en/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

116

There are a few mathematical rules about sets that we can ignore. Sets are supposed

to be distinct and unordered. As discussed in Chapter 1, it’s impractical to require our

sets to be distinct.

Mathematical sets can contain any kind of subset, of any shape. But for our purposes,

sets are relational data and each subset is relational data. The most important part of the

relational model is that sets only contain simple tabular data. Nesting sets is powerful

enough to represent anything. If each value also contained complex data types, the

whole relational model would break down.

 Chunking
Chunking is the process of taking small pieces of information and combining them into a

new and meaningful entity. Chunking is a way for us to hold complex ideas in our head,

despite our limited amount of short-term memory.

There’s no clear consensus on how many items we can hold in short-term memory,

although 7 ± 2 seems to be a popular answer.2 We use chunking all the time, such as

when we use a mnemonic device to remember the colors of the rainbow (Roy G. Biv)

or when we try to remember a phone number by breaking it into small and memorable

pieces. We can also use chunking to improve our SQL statements.

2 Based on the paper “The Magical Number Seven, Plus or Minus Two” by George A. Miller.

Figure 6-3. “Set of polygons, with a highlighted subset of regular polygons. Part of
a set theory series.” by Stephan Kulla is licensed under CC0.

Chapter 6 Build SetS with inline ViewS and anSi Join Syntax

https://commons.wikimedia.org/wiki/File:PolygonsSet_EN.svg
https://commons.wikimedia.org/wiki/File:PolygonsSet_EN.svg
http://kulla.me/en/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

117

It’s time to introduce the first and only complex example, using the space data set.

Let’s find out which rocket fuels are the most popular for each year and look for trends.

As technology changes, are rockets moving toward using a specific kind of fuel? To

answer that question with the old join syntax, here’s the FROM clause:

from launch, launch_vehicle_stage, stage, engine, engine_propellant,

propellant

Those six tables, their columns, and their relationships are too much to handle at

one time. Instead, we can think of the query as a set of three different sets: the launches,

launch vehicle engines, and engine fuels. Each one of those sets is a small, easily

understandable query. And putting the sets together is easy.

Since SQL statements have more connectivity than a typical set, we should adjust the

rule of thumb from 7 ± 2 to 3 ± 1. Figure 6-4 shows a Venn diagram of the joins between

those three sets. Join Venn diagrams typically show tables, but in the relational model,

there’s no difference between a table and a result set. Inner joins, left outer joins, and all

other operations work the same way on tables and sets.

Nesting sets is the key to simplifying our SQL. In some programming languages,

a deeply nested structure is a problem. But in SQL, a deeply nested structure lets us

simplify our code. Each level of our statements will have a small number of easily

Figure 6-4. Venn diagram of join between three relational sets

Chapter 6 Build SetS with inline ViewS and anSi Join Syntax

118

understandable chunks. The interface between chunks is always the same – boring old

relational data. If one chunk is causing a problem, drill down and look at the next level of

chunks. Repeat until the entire query is correct.

 Functional Programming
Functional programming can reduce dependencies and context. In functional

programming, everything is a mathematical function. Those functions always return

the same values for the same inputs and do not depend on the program state. (This kind

of function is different than PL/SQL functions, which may sometimes return different

results for the same inputs.) Those functions are called declaratively, which means we

tell the program what we want, but not how to do it.

Removing program state means there are no unexpected side effects that plague

most programs. But it’s hard to completely remove program state – our programs have to

change things eventually. Those difficulties might explain why functional programming

has never really taken off. The most widely used functional programming languages are

Lisp, Scheme, Haskell, and R. These languages are popular but are rarely in a top 10 list

of programming languages. But the idea of functional programming has seeped into

other languages.

SQL was not designed to be a functional programming language, but our programs

can easily implement functional programming ideas. Instead of passing in parameters

and returning values, SQL statements deal with relational data. Relational data in,

relational data out. That simplicity may feel limiting at first, but those limitations free us

from worrying about context. With simple, standard inputs and outputs, we can easily

understand a small chunk of SQL.

SQL data should be passed through nested sets, and only nested sets. By sticking

to that rule, we only have to think about the data coming from one direction. That rule

reduces the dependencies and the context. We want to minimize passing data through

global variables, bind variables, correlated subqueries, and other side effects. At the

lowest level of our programs, sets come from relational tables. To pass results to the

higher levels of our SQL statements, we must use inline views.

Chapter 6 Build SetS with inline ViewS and anSi Join Syntax

119

 Inline Views
Inline views are the perfect way to create and assemble small chunks of SQL. Inline

views help us simplify code by combining sets, chunks, and a functional programming

style.

 What Is an Inline View?
The terms “inline view,” “subquery,” and “correlated subquery” are often used

interchangeably, but it’s important to understand the difference. A subquery is any

query inside a query. A correlated subquery is found in the SELECT or WHERE clause and

references a column value from the outer query. An inline view is a subquery in the FROM

clause.

--Both of these are subqueries:

--Correlated subquery:

select (select * from dual a where a.dummy = b.dummy) from dual b;

--Inline view:

select * from (select * from dual);

Inline views are useful because they are independent from each other. In the

preceding example, we can run the subquery in the inline view all by itself. In an IDE,

running separate pieces is as easy as highlighting and clicking a button. Running

separate pieces is not possible with a correlated subquery, which requires understanding

the entire query at once.

Each inline view is simply a set and behaves like a normal table or view. Similar to

functional programming, inline views pass in one thing (sets) and always return the

same result (another set) and depend on nothing else.3

Inline views can be infinitely nested but we need to strike a careful balance. We don’t

want a query that’s too deep, because each level of inline views requires more code. We

don’t want a query that’s too shallow, because then we have to join all the tables at once.

It’s up to us to decide what a useable chunk is, and our definition may change over time.

3 Oracle 12c introduced lateral joins, which allow inline views to reference things outside of the
inline view. That new feature defeats the whole purpose of inline views and should be avoided.

Chapter 6 Build SetS with inline ViewS and anSi Join Syntax

120

When we first use a data model, we may only join a few tables at once, but the number of

tables will grow as we become familiar with the data. When our chunk size increases, we

must remember we’re writing queries for other people, not ourselves.

 Inline Views Make Code Bigger but Simpler
There’s a paradox with inline views. Simplifying should make our code smaller, but

adding inline views makes the overall code larger. The shortest way to query 10 tables is

to join them all together at once. If we split the list into two groups, we still have to join

all the tables, but now we also need to join those two groups. That splitting is a good idea

but it causes more code and more joins.

In the following example, the first query may initially look simpler than the

second query:

--#1: Join everything at once:

select ...

from table1,table2,table3,table4,table5,table6,table7,table8

where ...;

--#2: Use inline views:

select *

from

(

 select ...

 from table1,table2,table3,table4

 where ...

),

(

 select ...

 from table5,table6,table7,table8

 where ...

)

where ...;

The inline view version requires more characters, how can we measurably say that

the second version is simpler? First, think of the possible ways to join those 10 tables.

All at once, there are 10! = 3,628,800 possible ways to visualize and order those tables

Chapter 6 Build SetS with inline ViewS and anSi Join Syntax

121

in the WHERE clause. In the inline view version, there are (5! + 5!) * 2 = 480 ways to

visualize and order those tables in the WHERE clause.

The preceding math is overly precise. I’m not claiming the second version is literally

7560 times simpler than the first version. The point is that our code complexity doesn’t

grow linearly. Adding one table to a 10-table join is worse than adding one table to a

5-table join. The problem is related to our short-term memory, or the rule of 7 ± 2. Since

we have to remember the tables and how to join them, we should cut the rule and half

and use 3 ± 1.

 Simple Inline Views for a Large Example
Let’s look at the inline views for our first real example – finding the most popular rocket

fuels per year. There are three pieces in this query: launches, launch vehicle engines, and

engine fuels. First, we want to find the relevant launches:

(

 --Orbital and deep space launches.

 select *

 from launch

 where launch_category in ('orbital', 'deep space')

) launches

Next, we want to find the engines used for each launch vehicle. Launch vehicles,

typically rockets, can have multiple stages. Each stage can use a different engine.

(

 --Launch Vehicle Engines

 select launch_vehicle_stage.lv_id, stage.engine_id

 from launch_vehicle_stage

 left join stage

 on launch_vehicle_stage.stage_name = stage.stage_name

) lv_engines

Chapter 6 Build SetS with inline ViewS and anSi Join Syntax

122

Finally, we want to find the fuels used in each engine:

(

 --Engine Fuels

 select engine.engine_id, propellant_name fuel

 from engine

 left join engine_propellant

 on engine.engine_id = engine_propellant.engine_id

 left join propellant

 on engine_propellant.propellant_id = propellant.propellant_id

 where oxidizer_or_fuel = 'fuel'

) engine_fuels

The preceding inline views are the bulk of our query, in three small, independent

pieces. Arguably some of those inline views are too simple. For example, the first inline

view doesn’t even join a table, it only filters. But we should err on the side of caution. It’s

tough to gauge when an inline view is too complex. Query writers, like all writers, suffer

from the curse of knowledge; we unconsciously assume other people know everything

we know. Since we’re just starting with this data set, we want to start small. The less we

know, the smaller the chunks should be.

We can craft elegant nested structures using sets. But putting so much work into a

single SQL statement can cause issues. Chapter 12 discusses the style and performance

issues caused by building large, nested queries. Now that we have the small pieces, the

next section discusses how to put them together with the ANSI join syntax.

 ANSI Joins
If sets and inline view chunks are the ingredients, then ANSI joins are the recipe for

creating readable SQL statements. Using the JOIN keyword makes our queries a bit

wordier, but readability is more important than the number of characters.

The ANSI join syntax forces us to write our SQL statements one step at a time. Our

queries start with a single set, and we combine that set with something else to create a

new set and then repeat the process until done. Those sets could be tables, views, inline

views, materialized views, table collection expressions, partitions, remote objects, a

point-in-time snapshot of a table using flashback, a CSV file represented as an external

table, and who knows what else. The beauty of the relational model is that the origin of

Chapter 6 Build SetS with inline ViewS and anSi Join Syntax

123

the sets doesn’t matter. As long as sets return columns and rows, they can all be treated

the same way.

The simplicity of the ANSI join process is the key. We can easily get confused when

a dozen tables are thrown together quickly. But it’s difficult to lose track of the set when

we’re only adding one thing at a time.

Breaking a query into multiple inline view chunks and combining them with

JOIN keywords uses more characters. But readability is paramount. Everything else

mentioned in the syntax debates is irrelevant. The debates about standards compliance,

rare optimizer bugs, rare syntax features, tradition, Cartesian products, and character

count are meaningless if we can’t read our SQL statements.

 Example
Let’s finally put together our first complex SQL statement. The following query shows

the most common rocket fuels used per year. The query starts by creating three simple

inline view chunks: launches, launch vehicle engines, and engine fuels. Next, the query

combines these three inline views, counts the number of uses of fuel per year, ranks the

counts, and then selects the top 3.

Building queries with nested inline views will look inside out at first. Unlike

imperative programming, our query does not flow from top to bottom; the code starts

in the middle and moves to the outside. In the following example, each inline view is

numbered to help us navigate the code.4

--Top 3 fuels used per year using ANSI join syntax.

--

--#6: Select only the top N.

select launch_year, fuel, launch_count

from

(

 --#5: Rank the fuel counts.

 select launch_year, launch_count, fuel,

 row_number() over

4 Numbering isn’t generally necessary with inline views. Showing code in a book is a bit more
challenging than using code in an IDE. Without IDE features such as parentheses matching,
highlighting, and code folding, the numbering is helpful to keep track of how the data flows.

Chapter 6 Build SetS with inline ViewS and anSi Join Syntax

124

 (partition by launch_year order by launch_count desc) rownumber

 from

 (

 --#4: Count of fuel used per year.

 select

 to_char(launches.launch_date, 'YYYY') launch_year,

 count(*) launch_count,

 engine_fuels.fuel

 from

 (

 --#1: Orbital and deep space launches.

 select *

 from launch

 where launch_category in ('orbital', 'deep space')

) launches

 left join

 (

 --#2: Launch Vehicle Engines

 select launch_vehicle_stage.lv_id, stage.engine_id

 from launch_vehicle_stage

 left join stage

 on launch_vehicle_stage.stage_name = stage.stage_name

) lv_engines

 on launches.lv_id = lv_engines.lv_id

 left join

 (

 --#3: Engine Fuels

 select engine.engine_id, propellant_name fuel

 from engine

 left join engine_propellant

 on engine.engine_id = engine_propellant.engine_id

 left join propellant

 on engine_propellant.propellant_id = propellant.propellant_id

 where oxidizer_or_fuel = 'fuel'

) engine_fuels

Chapter 6 Build SetS with inline ViewS and anSi Join Syntax

125

 on lv_engines.engine_id = engine_fuels.engine_id

 group by to_char(launches.launch_date, 'YYYY'), engine_fuels.fuel

 order by launch_year, launch_count desc, fuel

)

)

where rownumber <= 3

order by launch_year, launch_count desc;

The preceding code and all other code samples are available on https://github.

com/ProOracleSQL/space/. This book assumes you are using Oracle 11.2 or greater.

Examples and syntax that require version 12.1 or greater will be individually noted.

This book doesn’t often have large chunks of code. It’s OK if you’re not running

the examples while reading this book. But this one time I recommend you at least

load that large query into an IDE and play around with it. Notice how we can easily

highlight different sections and debug the query. Each numbered section can be run

independently, and we can easily watch the result set grow until the query is complete.

The first five rows from the query are shown as follows. Old science fiction fans may

be disappointed – the most popular rocket fuels haven’t changed much in the past 60

years. Other than the first few years, the top results are usually UDMH (unsymmetrical

dimethylhydrazine) and different versions of kerosene. However, in the past 20 years,

fuels like liquid hydrogen have started to become more popular. (This data is clearly not

perfect, and some of the values should probably be grouped together. But those small

errors don’t mean our query is invalid.)

LAUNCH_YEAR FUEL LAUNCH_COUNT

----------- ------------- ------------

1957 Kero T-1 4

1957 Kero 1

1957 Solid 1

1958 Solid 39

1958 JPL 136 21

...

Chapter 6 Build SetS with inline ViewS and anSi Join Syntax

https://github.com/ProOracleSQL/space/
https://github.com/ProOracleSQL/space/

126

 Summary
Joins are the most important operation in a database. We’ve got to get the joins right if

we’re ever going to be successful in a database. The traditional way of building queries,

with the throw-all-the-tables-in-a-list style, causes many problems. Our queries will be

much better if we can think in sets, break the query into chunks with inline views, and

then combine the inline views with the ANSI join syntax.

Chapter 6 Build SetS with inline ViewS and anSi Join Syntax

127
© Jon Heller 2019
J. Heller, Pro Oracle SQL Development, https://doi.org/10.1007/978-1-4842-4517-0_7

CHAPTER 7

Query the Database
with Advanced SELECT
Features
SELECT is the most important SQL statement type. Even when we’re changing data,

most of the logic will go in the SELECT and WHERE clauses of the statement. Before we can

insert, update, or delete a set, we must be able to choose a set.

This chapter introduces intermediate and advanced Oracle SQL SELECT features.

Each topic could fill a whole chapter or maybe even a whole book. Instead of showing all

the options, and quizzing you on the syntax, this chapter focuses on breadth over depth

and only tries to show you what is possible. The first step to advanced programming

and tuning is to simply remember what features are available. When our SQL can be

improved by one of these advanced features, we can look up the syntax in the SQL

Language Reference.

The following topics are listed roughly in the order of importance. SELECT statements

almost always have expressions and conditions in the SELECT and WHERE clauses. Most

statements will join and sort data. Some statements may combine queries with set

operators. Tougher problems require advanced grouping, analytic functions, regular

expressions, row limiting, and pivoting and unpivoting. Rarer problems require features

like alternative table references, common table expressions, and recursive queries.

If we have non-relational data, we may need to process XML and JSON. Finally, we

occasionally have to consider National Language Support (NLS) issues.

128

 Operators, Functions, Expressions, and Conditions
Oracle has a huge number of operators, functions, expressions, and conditions. We need

to understand the precise definition of these four terms, be able to identify situations

where we’re missing something, the precedence rules, and how to simplify our complex

combinations of syntax.

 Semantics
Operators and functions both take inputs and return a value. The difference between the

two is that operators have a special syntax. For example, we can concatenate values with

a function call like CONCAT('A','A'), or we can concatenate values with an operator

like 'A'||'B'.1 An expression is a combination of literals, functions, and operators that

returns a value. Conditions are combinations of expressions and operators that return a

Boolean value. To put it simply: operators are symbols that return a value, functions are

passed in arguments and return a value, expressions combine things and return a value,

and conditions combine things and return a Boolean value.

The preceding definitions for operators, function, expressions, and conditions are

confusing and may seem pedantic, but the difference between them is important. In

some contexts, not all of those four things can be used. For example, a WHERE clause can

have a stand-alone condition, but cannot have a stand-alone expression. This statement

with a condition is valid: SELECT * FROM DUAL WHERE 1=1. This statement with an

expression is not valid: SELECT * FROM DUAL WHERE 1+1.

 How to Know When We’re Missing Something
We’ll never memorize all of the operators, functions, expressions, and conditions, no

matter how many times we read the SQL Language Reference. We can only learn enough

to develop a sense for when we’re missing something and when we ought to check the

manual for a way to simplify our code. Oracle provides enough operators, functions,

1 You could argue that a programming language doesn’t need operators, only functions. Removing
operators would make the language more consistent. Realistically, although it is more consistent
to write PLUS(1,1), our code looks better if we write 1+1. On the other hand, languages with too
many operators can lead to cryptic syntax, like many Perl programs.

Chapter 7 Query the Database with aDvanCeD seLeCt Features

129

expressions, and conditions for the most common tasks. If we find ourselves doing a

lot of type conversion, we’re not using the right functions. These syntax-soup problems

most commonly happen with date manipulation.

For example, let’s say we want to find information about the first Sputnik launch.

We may remember the launch took place on October 4, 1957. Nobody remembers the

exact time so we should only check the date. The following query might work but has

dangerous and unnecessary type conversions:

select *

from launch

where to_char(to_date(launch_date), 'YYYY-Mon-DD') = '1957-Oct-04';

There is a simpler, safer, and faster way to accomplish the preceding query. The

TRUNC function can remove the time portion of a date without any conversion. With

enough practice and SQL knowledge, we will intuitively know that the preceding query

can be transformed into something like the following query.

select *

from launch

where trunc(launch_date) = date '1957-10-04';

Alternatively, if there is an index on the LAUNCH_DATE column, the query might be

even faster with a date range instead of the TRUNC function. There are trade-offs between

simplicity and performance, but we should start with the simplest version first.

 Precedence Rules
There are a few non-trivial rules for the order of precedence of operators and conditions.

For operators, the most important rule is to follow the traditional math precedence rules:

multiplication and division first and then addition and subtraction. For conditions, the

most important precedence rule is: AND comes before OR.

More important than any precedence rule is the user interface rule: don’t make me

think. Don’t create complex expressions that require readers to perfectly understand the

precedence rules. Use parentheses and spacing to make the logic simple. For example,

even this simple statement can be quite confusing:

select * from dual where 1=1 or 1=0 and 1=2;

Chapter 7 Query the Database with aDvanCeD seLeCt Features

130

It’s safer to add parentheses whenever we mix ANDs with ORs. For example, rewrite the

preceding SQL to this:

select * from dual where 1=1 or (1=0 and 1=2);

 Simplify
Inline views are not only for simplifying joins. When we have an extremely long expression,

with many chained functions, it may make sense to split up the expressions with multiple

inline views. There’s no universal rule that tells us how many functions we can chain. The

decision to chain or split depends on the query and what makes sense to us.

Sometimes everything together at once is too much. The following query may be

doing too much at once for us to understand.

select a(b(c(d(e(f(g(h(some_column))))))))

from some_table;

Sometimes it makes sense to break expressions into multiple steps, like with the

following query. Using multiple inline views can make it easier to debug the query and

quickly check the values as they move between inline views. On the other hand, we don’t

need an inline view for every additional operator, function, expression, or condition.

Either way, don’t worry about performance; whichever style we choose Oracle can easily

combine expressions if necessary.

select a(b(c(d(result1)))) result2

from

(

 select e(f(g(h(some_column)))) result1

 from some_table

);

Combining conditions is deceivingly difficult. Logic that sounds reasonable in the

requirements does not always translate into a readable query. Some discrete math

tricks can help us deal with complex queries. For example, with De Morgan’s law we

can rewrite NOT(A OR B) to NOT(A) AND NOT(B) or change NOT(A AND B) to NOT(A) OR

NOT(B). Even if rewriting a statement doesn’t make it clearer, the process of rewriting will

help us understand the statement better.

Chapter 7 Query the Database with aDvanCeD seLeCt Features

131

For especially tricky expressions and conditions, it may help to build a large

truth table. These truth tables aren’t needed to demonstrate logical properties, we

already know that TRUE AND TRUE = TRUE. These tables are convenient ways to show

all combinations of the different inputs. Whenever I get completely confused by the

wording of a requirement, I’ll try to put the different pieces into something like Table 7-1.

Table 7-1. Example of a (Not Mathematically Precise) Multi-valued Truth Table

Foo Bar Baz … Result

true true true … a

true true False … b

true False true … a

true False False … C

… … … … …

 CASE and DECODE
The CASE expression is perfect for adding conditional logic to SQL. CASE and DECODE

are the IF statements of SQL, and they both use short-circuit evaluation. CASE has two

different versions, is available in both SQL and PL/SQL, and is wordier than DECODE but

is also more readable. DECODE is still useful but it has unexpected behavior with nulls.

The following example uses both CASE and DECODE to solve the fizz buzz

programming question. Fizz buzz is a children’s game and a common entry-level

programming interview question: count from 1 to 100, if the number is divisible by 3, say

“fizz,” if the number is divisible by 5, say “buzz,” if the number is divisible by both 3 and

5, say “fizz buzz.”

The following code shows that CASE uses more characters than DECODE, but is also

more readable. CASE is more powerful because it allows any kind of condition, not just an

equality condition. Both approaches use short-circuit evaluation, which means they stop

processing as soon as one match is found.

Chapter 7 Query the Database with aDvanCeD seLeCt Features

132

--Fizz buzz.

select

 rownum line_number,

 case

 when mod(rownum, 15) = 0 then 'fizz buzz'

 when mod(rownum, 3) = 0 then 'fizz'

 when mod(rownum, 5) = 0 then 'buzz'

 else to_char(rownum)

 end case_result,

 decode(mod(rownum, 15), 0, 'fizz buzz',

 decode(mod(rownum, 3), 0, 'fizz',

 decode(mod(rownum, 5), 0, 'buzz', rownum)

)

) decode_result

from dual

connect by level <= 100;

LINE_NUMBER CASE_RESULT DECODE_RESULT

----------- ----------- -------------

 1 1 1

 2 2 2

 3 fizz fizz

 4 4 4

 5 buzz buzz

 6 fizz fizz

 7 7 7

...

The preceding example uses the more powerful searched case expression. There is

also a simple case expression, a shorter syntax for comparing against a long list of values.

The following example shows another way to write the fizz buzz program by hard-coding

the values. This query is clearly not the best way to write the program, but the query

demonstrates that when we need to hard-code a lot of values, different CASE and DECODE

syntaxes can simplify our code.

Chapter 7 Query the Database with aDvanCeD seLeCt Features

133

--Hard-coded fizz buzz.

select

 rownum line_number,

 case rownum

 when 1 then '1'

 when 2 then '2'

 when 3 then 'fizz'

 else 'etc.'

 end case_result,

 decode(rownum, 1, '1', 2, '2', 3, 'fizz', 'etc.') decode_result

from dual

connect by level <= 100;

DECODE is one of the few places where NULL = NULL is true. The following query

returns “A” instead of “B”. This behavior is one of those exceptions we just have to

memorize.

select decode(null, null, 'A', 'B') null_decode from dual;

 Joins
There are many ways to classify joins and there is much overlap between those

classifications. The terminology may sound confusing and some of the options may

seem esoteric. Keep in mind that joining is the most important database operation, and

we should expect an advanced database to have many join options. (Measuring join

features is also a quick way to evaluate alternative databases. If a database doesn’t take

joins seriously, it’s only a program for storing data, not processing data.) This chapter

only discusses the join syntax and functionality; the algorithms used to implement joins

are discussed in Chapter 16.

 1. Inner, left outer, right outer, full outer, cross (Cartesian product),

partitioned outer, lateral, cross apply, or outer apply

 2. Old syntax or ANSI join syntax

 3. Equijoin or non-equijoin

 4. Semi-join, anti-join, or neither

Chapter 7 Query the Database with aDvanCeD seLeCt Features

134

 5. Self-join or not a self-join

 6. Natural join or not a natural join

 7. ON clause or USING clause

Some of the preceding items were already discussed and demonstrated in examples

throughout the previous chapters. We don’t need to further discuss inner, left, right, full,

cross, or old syntax versus ANSI join syntax. Since joins are so important, the rest of this

section will discuss every remaining item on the preceding list.

 Partitioned Outer Joins
Partitioned outer joins are useful for data densification. Densification happens when

we are counting the number of times something happens, for each group, and we want

to show the results against a time period. We want to see the counts, per item, per time

period, even if the counts are zero. Creating multiple empty rows is hard to do with a

regular left join – the left join might include all the time periods, but not all time periods

per item. A partitioned outer join is like a multi-join – it joins the time periods for each

item.

Partitioned outer joins are tricky to understand without an example. For a concrete

example, let’s say we want to count the number of rocket launches per launch vehicle

family. We want to see the results for 2017, broken down into months. If there were no

launches for a month, we still want to see a row, but with a count of zero.

--Launches per launch vehicle family, per month of 2017.

select

 launches.lv_family_code,

 months.launch_month,

 nvl(launch_count, 0) launch_count

from

(

 --Every month in 2017.

 select '2017-'||lpad(level, 2, 0) launch_month

 from dual

 connect by level <= 12

) months

Chapter 7 Query the Database with aDvanCeD seLeCt Features

135

left join

(

 --2017 orbital and deep space launches.

 select

 to_char(launch_date, 'YYYY-MM') launch_month,

 lv_family_code,

 count(*) launch_count

 from launch

 join launch_vehicle

 on launch.lv_id = launch_vehicle.lv_id

 where launch_category in ('orbital', 'deep space')

 and launch_date between

 date '2017-01-01' and timestamp '2017-12-31 23:59:50'

 group by to_char(launch_date, 'YYYY-MM'), lv_family_code

) launches

 partition by (lv_family_code)

 on months.launch_month = launches.launch_month

order by 1,2,3;

LV_FAMILY_CODE LAUNCH_MONTH LAUNCH_COUNT

-------------- ------------ ------------

Ariane5 2017-01 0

Ariane5 2017-02 1

Ariane5 2017-03 0

...

Atlas5 2017-01 1

Atlas5 2017-02 0

Atlas5 2017-03 1

...

The preceding results don’t look that special at first. But those rows with zeroes

would have been a real pain to generate without a partitioned outer join. There’s no

other easy way to join tables repeatedly, based on a group.

Chapter 7 Query the Database with aDvanCeD seLeCt Features

136

 Lateral, Cross Apply, and Outer Apply
There will be no examples of lateral, cross apply, or outer apply joins. Those join types

are evil and should be avoided. Those features were mostly added to Oracle to help

migrate SQL Server queries. Those three join types allow inline views to access values

outside of them. Accessing data outside of an inline view completely destroys the reason

for using inline views in the first place, as described in Chapter 6. Those three join types

increase the context and prevent small, independent sets. Lateral, cross apply, and outer

apply joins are reading something they’re not supposed to, similar to global variables.

 Equijoin or Non-equijoin
Equijoin versus non-equijoin seems like a meaningless distinction at first. An equijoin

is a join based on the equality operator, =. A non-equijoin uses something else, such

as <> or BETWEEN. The distinction matters because there can be serious performance

issues when using non-equijoins. Only equijoins can be used for hash join operations.

Hash joins are discussed in more detail in Chapter 16. For now, it’s only important to

understand that hash joins are often the fastest join method. If there are performance

problems, it may help to rewrite a non-equijoin into an equijoin, to allow a hash join. But

it’s not always possible to rewrite a predicate into an equality predicate.

 Semi-join or Anti-join
Semi-joins and anti-joins are join types where Oracle may not need to finish the join to

get the results. For semi-joins, Oracle can stop joining as soon as it finds one row that

matches. For anti-joins, Oracle can stop joining as soon as it finds one row that doesn’t

match. These join types happen when we create correlated subqueries – a subquery in

the SELECT or WHERE clause that references something outside of itself.

As an example of a semi-join, let’s say we want to count all the satellites that have

an associated launch. A similar query was created in Chapter 1 to discuss nulls, but now

we’re going to slightly rewrite the query to emphasize the semi-join.

--Satellites with a launch.

select count(*)

from satellite

where exists

Chapter 7 Query the Database with aDvanCeD seLeCt Features

137

(

 select 1/0

 from launch

 where launch.launch_id = satellite.launch_id

);

The result is 43,112 satellites, which is just one smaller than the total number of

satellites. Let’s use an anti-join to find the satellite without a launch. The following query

returns one row, for “Unknown Oko debris.”

--Satellites without a launch.

select official_name

from satellite

where not exists

(

 select 1/0

 from launch

 where launch.launch_id = satellite.launch_id

);

You may have noticed something seemingly impossible in the preceding examples.

Both of the preceding queries divide by zero. EXISTS conditions don’t use the results

of the subquery, the conditions only care about whether or not there are rows. The

subquery must have an expression to fulfill the syntax rules, but that expression is

ignored and not even run. To emphasize the unimportance of the value, I used 1/0. As

a rule, whenever I do something weird, like create a value that doesn’t matter, I like to

make the code look obviously weird. If the query had just used a normal value like “1”,

or “A”, future readers might wonder what those values mean. The expression 1/0 will

hopefully make it clear to others how irrelevant the value is.

Semi-joins and anti-joins are most notable because they often cause performance

problems. The way semi- and anti-joins are coded looks like we’re asking Oracle to do

work for each row. Almost like we’re trying to break out of the declarative programming

model and tell Oracle how to do its job. Oracle is usually smart enough to know when

these queries are best rewritten to use normal joins. But sometimes we can improve

performance and readability by rewriting queries to not have correlated subqueries.

Chapter 7 Query the Database with aDvanCeD seLeCt Features

138

 Self-joins
Self-joins are when a table is joined to itself. At a first glance there’s nothing special

about self-joins – they work the same way as any other join. The following example

shows a simple self-join of the ORGANIZATION table, to find each organization’s parent

organization. When joining the table to itself, the table is listed twice in the FROM clause

and at least one of the tables must have an alias.

--Organizations and parent organizations.

select

 organization.org_name,

 parent_organization.org_name parent_org_name

from organization

left join organization parent_organization

 on organization.parent_org_code = parent_organization.org_code

order by organization.org_name desc;

ORG_NAME PARENT_ORG_NAME

--------------------- ---------------------

iSpace

exactEarth Ltd. Com Dev International

de Havilland Aircraft

...

The results may look a little odd at first because of case-sensitive sorting. By default,

Oracle sorts are case sensitive, and when sorting descending the lowercase letters come

first. You may get different results on your database, depending on NLS parameters, as

described later in this chapter.

Self-joins are worth a separate category because they can be so complicated. The

preceding example was simple because we only looked for one parent. But that parent

might also have a parent, which also has a parent, etc. Finding all of the ancestors, or

finding the root ancestor, requires a recursive query. Recursive queries are extra tricky

and are dealt with in a later section.

Chapter 7 Query the Database with aDvanCeD seLeCt Features

139

 Natural Joins and USING Considered Harmful
Natural joins should never be used. Natural joins automatically determine the join

conditions based on the column names. Wherever the column names match, the tables

will be joined based on equality conditions of those columns. Natural joins can be inner,

left, right, or full outer. Natural joins are meant to save a trivial amount of typing but they

can lead to surprising results.

It’s rare that we perfectly remember all of the column names in our tables. If we add

columns to our tables, and those column names happen to match, the new columns

could break existing queries.

The following query is an example of a natural join between the LAUNCH table and the

SATELLITE table. We’ve joined those tables before, and both tables have a column named

LAUNCH_ID that links them together. We might expect there to be 43,112 rows returned.

Instead, the following query only returns 19 rows:

--Natural join between LAUNCH and SATELLITE.

select *

from launch

natural join satellite;

The two tables in the preceding query have an additional column with the same

name – APOGEE. The apogee is the furthest distance from Earth and it makes no sense to

join on those two columns. Most launches do not have apogee data. And when a launch

does have an apogee, it rarely matches the satellite apogee. Although a rocket might

launch a satellite into orbit, most satellites have their own fuel and can maneuver into a

different orbit.

We should also avoid the USING syntax. This syntax also lets us save a trivial amount

of typing by simply listing the columns, instead of listing the entire conditions. For

example, to join LAUNCH and SATELLITE, we can save some typing like this:

--USING syntax:

select *

from launch

join satellite using (launch_id);

Chapter 7 Query the Database with aDvanCeD seLeCt Features

140

The USING syntax is at least safer than a natural join. We have to manually list the

columns so we won’t accidentally join unexpected columns. But a few weird things

happen with the USING syntax. We can no longer use the * syntax with a specific table,

and we can no longer reference the joined column with the table name. Both of the

following examples raise an exception:

--Invalid USING syntax examples, both raise the exception:

--ORA-25154: column part of USING clause cannot have qualifier

select launch.*

from launch

join satellite using (launch_id);

select launch.launch_id

from launch

join satellite using (launch_id);

There are workarounds to the preceding problems but the workarounds are

annoying. Those workarounds can be especially annoying when we’re debugging large

SQL statements and want to temporarily see all the results from a specific table. Instead

of just adding TABLE.* we may have to significantly rewrite our SELECT expressions.

Joins are the most important SQL feature and we need to thoroughly understand

them. Joins are one of the few areas where I recommend you memorize the syntax. If we

want to be fluent in SQL, we need to be able to join tables effortlessly. Re-read the list at

the beginning of this section and make sure you understand all the different join types.

 Sorting
The ORDER BY clause has several features and some potentially surprising behavior. We

also need to consider the effects of sorting to help us decide when to sort.

 Sorting Syntax
We can sort by multiple columns, expressions, or positions. Sorting can be in either

ascending or descending order and can specify exactly how to handle nulls. For an

example of sorting, let’s find the satellites most recently launched into orbit:

Chapter 7 Query the Database with aDvanCeD seLeCt Features

141

--Most recently launched satellites.

select

 to_char(launch.launch_date, 'YYYY-MM-DD') launch_date,

 official_name

from satellite

left join launch

 on satellite.launch_id = launch.launch_id

order by launch_date desc nulls last, 2;

LAUNCH_DATE OFFICIAL_NAME

----------- -------------

2017-08-31 deb IRNSS-R1H

2017-08-31 deb IRNSS-R1H

2017-08-31 IRNSS-R1H

...

There’s a lot going on in the preceding ORDER BY clause. The clause looks

ambiguous – LAUNCH_DATE is both a date column and an expression that returns a text

value. Which one is being used? The expression takes precedence, and in this case we

are sorting by the text value. (If we wanted to sort by the date column value, we would

need to prefix the name with the table name, like LAUNCH.LAUNCH_DATE.) Luckily, the

text value uses the ISO-8601 date format, so the text version sorts the same way as a date

value. If the date format was "DD-Mon-YYYY," the “latest” rows would be from October

31. The NULLS LAST puts satellites without a launch date at the end of the results. (Some

of the “satellites” are junk, and we don’t know when they were launched.) Finally, the

number 2 means to sort by the second column, which is helpful to break any ties.

We should always fully sort results that are displayed. SQL query results often appear

to be sorted but are not. People may make a bad assumption based on the appearance of

the first few rows and may come to the wrong conclusion. To avoid misrepresenting the

data, it’s best to fully sort the rows, starting from the leftmost column. On the other hand,

if the results are not displayed, but are only used for internal processing, we do not want

to sort the results. Sorting, especially for huge amounts of data, can take a huge amount

of time.

Chapter 7 Query the Database with aDvanCeD seLeCt Features

142

 Sorting Performance, Resources, and Implicit Sorting
The performance impact of sorting is complicated. There are two main topics to

consider – the algorithmic complexity of sorting and when sorting requires disk access

instead of memory access. Chapter 16 contains a quick crash course in algorithmic

complexity. For now, let’s just accept that the number of operations required to sort N

rows is roughly N*LOG(N). Sort operations get slower faster than we may think. If sorting

1000 rows requires 1000*LOG(1000) = 1000*3 = 3000 operations, then sorting 2000

rows requires 2000*LOG(2000) = 2000*3.3 = 6600 operations. The input doubled but

the amount of work has more than doubled.

Sorting is ideally done in the Program Global Area (PGA) memory buffer. PGA

memory is split among server processes and is mostly controlled by the instance

parameter PGA_AGGREGATE_TARGET. Sorting isn’t just CPU intensive, it also requires space

to store temporary result sets. If those temporary results can’t fit in the PGA, the results

get written to disk in the temporary tablespace. Disk access is orders of magnitude

slower than memory access. In the worst case, adding a single row to the input can make

the sorting run ridiculously slower.

The ORDER BY clause is the only way to guarantee ordered results. Looking for

workarounds to return ordered results as a by-product is a fool’s errand. In some

versions of Oracle, in some cases, there are tricks that sort the results without actually

asking to sort them. For example, older versions of Oracle automatically sorted results

in GROUP BY. Years later, many programs broke when Oracle introduced new parallel

features and grouping algorithms that don’t implicitly sort. We must never rely on

undocumented features to sort data.

If we have more than just ASCII data, we also need to consider Oracle’s National

Language Support. NLS settings also affect comparisons and are discussed later in this

chapter. For now, the most important NLS property to remember is that Oracle sorts are

case sensitive by default.

 Set Operators
Set operators combine multiple queries with UNION, UNION ALL, INTERSECT, and MINUS.

The difference between joins and set operators is that set operators depend on all of the

values in the sets, not just the values used in join conditions. Since set operators depend

Chapter 7 Query the Database with aDvanCeD seLeCt Features

143

on all of the values, both sets must have the same number and types of columns. Set

operators are similar to joins and in some cases can be programmed as joins. Like joins,

we can visualize set operators through the Venn diagrams in Figure 7-1.

Figure 7-1. Venn diagram of SQL set operators

 UNION and UNION ALL
The most common set operators are UNION and UNION ALL. Those set operators are used

when we want to combine sets of data, even if there are no relationships between those

sets. UNION creates a distinct set, whereas UNION ALL allows for duplicates. Removing

duplicates can have a huge performance impact, so we should use UNION ALL by default.

Chapter 7 Query the Database with aDvanCeD seLeCt Features

144

The most common use of UNION ALL is to generate data. In Oracle we must always

select from something, so there is a special pseudo-table named DUAL. The DUAL2 table

only has one row, so if we want to create multiple rows, we must combine statements

with UNION ALL like this:

select '1' a from dual union all

select '2' a from dual union all

select '3' a from dual union all

...

 INTERSECT and MINUS
INTERSECT returns rows where every value is identical between both queries. MINUS

returns rows in the first query that are not in the second query. INTERSECT and MINUS are

helpful for comparing data. For example, let’s take the fizz buzz example and compare

the CASE and DECODE techniques. A query like this can help us prove that both versions

return the exact same data:

--Compare CASE and DECODE fizz buzz.

select

 rownum line_number,

 case

 when mod(rownum, 15) = 0 then 'fizz buzz'

 when mod(rownum, 3) = 0 then 'fizz'

 when mod(rownum, 5) = 0 then 'buzz'

 else to_char(rownum)

 end case_result

from dual connect by level <= 100

minus

select

 rownum line_number,

 decode(mod(rownum, 15), 0, 'fizz buzz',

 decode(mod(rownum, 3), 0, 'fizz',

2 In old versions of Oracle, the DUAL table was a real table. Since DUAL was a real table, it was
possible to change it, which led to strange bugs. In current versions, DUAL is a special memory
structure that can’t be changed and performs better than a regular table.

Chapter 7 Query the Database with aDvanCeD seLeCt Features

145

 decode(mod(rownum, 5), 0, 'buzz', rownum)

)

) decode_result

from dual connect by level <= 100;

Since the two subqueries in the preceding example are equal, the full query

returns no rows. If we replace the MINUS with an INTERSECT, we could demonstrate the

subqueries are identical by counting that all 100 rows are returned.

 Set Operator Complications
Set operator comparisons are not always trivial. With the preceding example, we cannot

simply say “the minus returns 0 rows, the sets are equal” or “the intersect returns 100

rows, the sets are equal.”

What if the first subquery had LEVEL <= 99 instead of LEVEL <= 100? The full

query would still return 0 rows but the sets aren’t completely equal. Or what if the first

subquery had LEVEL <= 101 and we used INTERSECT? The full query would return 100

rows, even though the sets are not equal. We should count the rows before comparing

with MINUS or INTERSECT.

Similar to the rules of DECODE, set operators treat two nulls as identical values. Set

operators are another time when Oracle seems to break its own rules. But at least this

time the broken rule makes sense. In practice, when comparing sets, we always want

nulls to match. For example, the following query returns just one row, which is what we

want:

select null from dual

union

select null from dual;

Set operators cannot work on unusual data types, such as CLOB, LONG, XMLType,

user-defined types, etc. Those types will generate an error message like “ORA-00932:

inconsistent datatypes: expected - got CLOB.” Large objects could theoretically contain

gigabytes of data, which cannot be easily compared or ordered. The same limitations

also apply to joining and sorting.

Chapter 7 Query the Database with aDvanCeD seLeCt Features

146

 Advanced Grouping
Oracle SQL has many options to help us group our data and aggregate results. This

book assumes you are familiar with basic grouping concepts, so let’s start with a simple

example and then add on to it. Let’s count the number of orbital and deep space

launches per launch vehicle family and per launch vehicle name.

--Count of launches per family and name.

select lv_family_code, lv_name, count(*)

from launch

join launch_vehicle

 on launch.lv_id = launch_vehicle.lv_id

where launch.launch_category in ('orbital', 'deep space')

group by lv_family_code, lv_name

order by 1,2,3;

LV_FAMILY_CODE LV_NAME COUNT(*)

-------------- --------- --------

ASLV ASLV 4

ASLV SLV-3 4

Angara Angara A5 1

...

The results are ordered and start with the Augmented Satellite Launch Vehicle (ASLV,

an Indian rocket from the 1980s) and Angara (a new Russian rocket). This simple type of

grouping is enough for most queries. Occasionally we may need to limit the results with

the HAVING clause. For example, if we only want to see the launch counts for the most

popular rockets, we could add this line of code between the WHERE and the ORDER BY

clauses: HAVING COUNT(*) >= 10. Note that the HAVING conditions cannot reference the

aliases in the SELECT clause, so we may need to repeat the logic.

 ROLLUP, GROUP*, CUBE
More complicated reports require multiple levels of groupings. Let’s expand on the

previous example. In addition to counting per family and name, we also want the counts

only for the family, as well as a grand total. The ROLLUP syntax lets us perform multiple

groupings in the same query. ROLLUP starts at the most detailed level, the rightmost

column in the list, and keeps adding subtotals for each column to the left.

Chapter 7 Query the Database with aDvanCeD seLeCt Features

147

--Launch count per family and name, per family, and grand total.

select

 lv_family_code,

 lv_name,

 count(*),

 grouping(lv_family_code) is_family_grp,

 grouping(lv_name) is_name_grp

from launch

join launch_vehicle

 on launch.lv_id = launch_vehicle.lv_id

where launch_category in ('orbital', 'deep space')

group by rollup(lv_family_code, lv_name)

order by 1,2,3;

LV_FAMILY_CODE LV_NAME COUNT(*) IS_FAMILY_GRP IS_NAME_GRP

-------------- ------- -------- ------------- -----------

ASLV ASLV 4 0 0

ASLV SLV-3 4 0 0

ASLV 8 0 1

Angara Angara A5 1 0 0

...

 5667 1 1

The preceding results show multiple levels of grouping, including the grand total at

the bottom. The nulls indicate which columns are aggregated in each row. For example,

the third row has a null for LV_NAME, because that row shows totals for all values of the

ASLV family.

It’s not always easy to tell which rows are subtotals. Oracle provides multiple ways

to distinguish the row’s grouping level. The group level of each row can be precisely

determined with the functions GROUP_ID, GROUPING, or GROUPING_ID. GROUPING is the

easiest to use, that function returns a 1 or 0 to indicate whether or not the row is a group

of a specific set of columns. That function is used in the preceding results to generate the

columns IS_FAMILY_GRP and IS_NAME_GRP. Columns that tell us the grouping level can

be used for things like filtering out unwanted rows, or to change the display to emphasize

grand totals. GROUP_ID and GROUPING_ID are more powerful but are also more difficult to

use. These two functions return an encoded number to distinguish between row types.

Chapter 7 Query the Database with aDvanCeD seLeCt Features

148

In addition to ROLLUP, Oracle also provides CUBE and GROUPING SETS to define even

more types of groupings. CUBE groups all combinations of columns, and GROUPING SETS

lets us specify multiple sets to group together. These grouping functions can quickly get

crazy, so I’m not going to show any more huge examples. If we find ourselves creating

multiple summary queries and concatenating them with UNION ALL, we should look for

an advanced grouping function to simplify our code.

After the data is grouped, the values inside each group need to be combined with

the proper aggregate functions. Most aggregation is satisfied by combinations of MIN,

MAX, AVG, SUM, and COUNT. There are many more aggregate functions for different types of

 statistical operations. And all of the aggregate functions can use expressions, such as a

CASE expression, making them even more powerful.

 LISTAGG
LISTAGG aggregates strings, and that function was shamefully absent from Oracle for

decades. In the past, every Oracle developer had to create their own custom solution for

string aggregation. There is a lot of old code and old forum posts that discuss different

strategies for aggregating strings: CONNECT BY, MODEL, Oracle data cartridge, COLLECT,

undocumented functions like WM_CONCAT, etc. None of that code is needed anymore. If

we need to generate a comma-separated list of strings, we should always use LISTAGG.

For example, this query displays the name of all rockets in the Ariane rocket family

and lists the names in alphabetical order:

select

 lv_family_code,

 listagg(lv_name, ',') within group (order by lv_name) lv_names

from launch_vehicle

where lower(lv_family_code) like 'ariane%'

group by lv_family_code

order by lv_family_code;

LV_FAMILY_CODE LV_NAMES

-------------- --------

Ariane Ariane 1,Ariane 2,Ariane 3,Ariane 40,...

Ariane5 Ariane 5ECA,Ariane 5ES,Ariane 5ES/ATV,...

Chapter 7 Query the Database with aDvanCeD seLeCt Features

149

Creating lists of strings is a common task and can get tricky. Since Oracle 12.2 the

LISTAGG function can handle overflow errors, when the result is larger than the 4,000

byte limit. And we can always use multiple inline views to preprocess the text before

it’s aggregated. Inline views make it easy to remove duplicates or other values before

aggregating.

 Advanced Aggregate Functions
The COLLECT function is useful when we need to aggregate “anything.” The COLLECT

function works together with the CAST function to take a bunch of values and convert

those values into a single nested table. That nested table can then be passed to a

custom PL/SQL function for further processing. COLLECT gives us complete control over

aggregation. COLLECT and custom PL/SQL functions are briefly discussed in Chapter 21.

Aggregate functions also have a FIRST and LAST mode. Those modes are useful when

we want to find a minimum or maximum value, but we want to define minimum or

maximum based on a different column. For example, let’s compare launch apogees – the

furthest distance from Earth. For each launch vehicle family, let’s find the first launch

apogee. We pass the column APOGEE to the MIN function, but we want to calculate the

minimum based on LAUNCH_DATE.

--For each family find the first, min, and max apogee.

select

 lv_family_code,

 min(launch.apogee) keep

 (dense_rank first order by launch_date) first_apogee,

 min(launch.apogee) min_apogee,

 max(launch.apogee) max_apogee

from launch

join launch_vehicle

 on launch.lv_id = launch_vehicle.lv_id

where launch.apogee is not null

group by lv_family_code

order by lv_family_code;

Chapter 7 Query the Database with aDvanCeD seLeCt Features

150

LV_FAMILY_CODE FIRST_APOGEE MIN_APOGEE MAX_APOGEE

-------------- ------------ ---------- ----------

10KS2500 10 10 10

48N6 40 40 40

A-350 10 0 300

...

The results show us that the first apogee is usually the same as the minimum. That

result makes sense – when testing a launch vehicle it’s best to start with small launches. But

for the anti-ballistic missile A-350, the first launch went further than the minimum launch.

That difference is because some of the later launches failed and had an apogee of 0.

 Analytic Functions
Analytic functions, also known as window functions, can significantly improve the

power of our SQL statements. So far we have seen operators, functions, expressions,

and conditions operate on two levels – for every row or for all the rows in a GROUP BY

clause. Analytic functions let us combine those two levels. With analytic functions

we can calculate something for every row, but that calculation is based on a group of

data. Calculations like running totals and moving averages are best done with analytic

functions. There are up to five parts of an analytic function: function, arguments,

partition clause, order by clause, and windowing clause.

 Analytic Function Syntax
There are many analytic functions to choose from, including almost all of the aggregate

functions we have already discussed. AVG, COUNT, LISTAGG, MIN, MAX, and SUM can operate

as either aggregate or analytic functions. The most popular analytic functions are DENSE_

RANK, RANK, LAG, LEAD, and ROW_NUMBER. Those functions are shown in examples later in

this section.

The arguments to analytic functions can be any valid expression and can involve

columns, operators, etc. Some analytic functions, such as ROW_NUMBER, don’t take any

arguments and have empty parentheses after the function name. CASE expressions are

a common argument for aggregate and analytic functions. For example, we can create

conditional sums with an expression like SUM(CASE WHEN ... THEN 1 ELSE 0 END).

Chapter 7 Query the Database with aDvanCeD seLeCt Features

151

The partition by clause defines the group for the analytic function. The partition by

clause is a list of columns or expressions, similar to the list of columns or expressions

we might use in a group by clause. If we want to use all the rows, for example, to show a

grand total per row, simply leave the partition by clause empty.

The order by clause defines the order the rows are processed. For example, in a

running total the values must be totaled in a specific order. That clause is also a list of

comma-separated columns or expressions. Similar to the partition by clause, we can

sometimes leave the order by clause blank, to mean the order doesn’t matter.

The windowing clause is less common. That clause lets us specify a more precise

group of rows, also called a window. After the partition by clause specifies a group, the

window clause can narrow it down. For example, a common window clause is ROWS

BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW. This clause is tricky and isn’t fully

explained here. If you’re ever writing a query and wish you could specify X rows before

or after, look up the full syntax in the manual.

 Analytic Function Examples
The following example demonstrates the RANK analytic function, along with the order by

clause and the partition by clause. Let’s find the most popular launch vehicle families.

But there are a few ways to define most popular: the most popular overall or the most

popular per category. To find the most popular overall, don’t partition by anything. To

find the most popular per category, partition by the category. And in both cases we want

to order the results descending – the largest number of launches is ranked first.

--Most popular launch vehicle families.

select

 launch_category category

 ,lv_family_code family

 ,count

 ,rank() over (order by count desc) rank_total

 ,rank() over (partition by launch_category

 order by count desc) rank_per_category

Chapter 7 Query the Database with aDvanCeD seLeCt Features

152

from

(

 --Launch counts per category and family.

 select launch_category, lv_family_code, count(*) count

 from launch

 join launch_vehicle

 on launch.lv_id = launch_vehicle.lv_id

 group by launch_category, lv_family_code

 order by count(*) desc

)

order by count desc, launch_category desc;

CATEGORY FAMILY COUNT RANK_TOTAL RANK_PER_CAT

----------------- ----------- ----- ---------- ------------

suborbital rocket Rocketsonde 21369 1 1

suborbital rocket M-100 7749 2 2

suborbital rocket Nike 2948 3 3

suborbital rocket Loki 2495 4 4

orbital R-7 1789 5 1

suborbital rocket Arcas 1716 6 5

...

Pay close attention to the numbers in the preceding results. Analytic queries are

tricky, even something as simple as counting and ranking is complicated because the

data seems to be moving in so many directions. The vast majority of popular launch

vehicles are sounding rockets in the “suborbital rocket” category. Sounding rockets

are relatively small and usually carry a small payload of scientific experiments. Look

carefully at the total rank and the rank per category. Notice how the numbers mostly go

in order, until the R-7 rocket. The R-7 rocket might be fifth overall, but it is first for orbital

launches. Launching tiny experiments is different than launching satellites and people,

so that rocket may deserve first place, depending on how we count.

RANK, DENSE_RANK, and ROW_NUMBER are similar functions. We’re getting close to

syntax trivia here, but these functions are so common it’s worth knowing the exact

differences. RANK uses what is called “Olympic ranking”; if two rows tie for first place, the

next row is third. DENSE_RANK does the opposite; if two rows tie for first place, the next

row is second. ROW_NUMBER never allows ties; if we don’t fully specify the order by clause,

the function will randomly pick a winner. ROW_NUMBER is useful when we must limit the

Chapter 7 Query the Database with aDvanCeD seLeCt Features

153

number of rows returned, but we don’t particularly care about the rank. For example, a

screen may only be able to display 20 rows regardless of ties.

The functions LAG and LEAD are useful for seeing the previous and next values. The

following example uses LAG to find the days between deep space launches of a family of

rockets. The query also includes a running total of launches per rocket family.

--Deep space launches with analytic functions per family.

select

 to_char(launch_date, 'YYYY-MM-DD') launch_date,

 flight_id2 spacecraft,

 lv_family_code family,

 trunc(launch_date) - lag(trunc(launch_date)) over

 (partition by lv_family_code

 order by launch_date) days_between,

 count(*) over

 (partition by lv_family_code

 order by launch_date) running_total

from launch

join launch_vehicle

 on launch.lv_id = launch_vehicle.lv_id

where launch_category = 'deep space'

order by launch.launch_date;

LAUNCH_DATE SPACECRAFT FAMILY DAYS_BETWEEN RUNNING_TOTAL

----------- ---------- ------- ------------ -------------

1959-01-02 Luna-1 R-7 1

1959-03-03 Pioneer 4 Jupiter 1

1959-09-12 Luna-2 R-7 253 2

...

Analytic functions can solve many types of advanced problems and there’s not

enough space to list them all here. One interesting example is finding consecutive

or non-consecutive patterns, sometimes called islands and gaps, using a technique

named tabibitosan. The core of the technique is simple – convert each row to a number

and then subtract the ROW_NUMBER from that number to generate a group ID. Fully

demonstrating that technique would take several pages. If you’re interested, there’s an

example in the repository that shows ranges of consecutive launches per launch family.

Chapter 7 Query the Database with aDvanCeD seLeCt Features

154

This section only touched on some of the uses of analytic functions. As always,

I recommend you look at the manual if you need to learn more about this topic. We

should use analytic functions whenever we’re trying to calculate something where one

row depends on other rows. However, even analytic functions are not powerful enough

to help us with recursive relationships, when a row depends on a row, which depends on

a row, etc. For those more difficult cases, see the section in this chapter about recursive

queries, or see the MODEL clause section in Chapter 19.

 Regular Expressions
Regular expressions are powerful pattern-matching text strings that can be used to

filter, validate, and change text data. Oracle SQL provides several ways to apply regular

expressions to our queries.

All programmers should be familiar with regular expressions. For readers who are

new to regular expressions, the beginning of this section provides a brief introduction.

For readers who are experienced with regular expressions, this section ends with

important warnings about over-using regular expressions.

 Regular Expression Syntax
Oracle SQL allows regular expressions through the condition REGEXP_LIKE and the

functions REGEXP_COUNT, REGEXP_INSTR, REGEXP_REPLACE, and REGEXP_SUBSTR. Each

condition and function mirrors a condition and function that you’ve probably seen

before. I assume you’ve used the non-regular expression versions and are familiar

with the pattern-matching characters “_” and “%”. The REGEXP_* functions have similar

parameters as the normal functions. For example, just like the normal REPLACE, REGEXP_

REPLACE allows us to specify the position and the occurrence of the text to replace.

The following list explains the most common regular expression options.

. – Matches any one character.

* – Matches zero or more occurrences.

+ – Matches one or more occurrences.

? – Matches zero or one occurrences.

Chapter 7 Query the Database with aDvanCeD seLeCt Features

155

| – An “or” operator.

^ – Matches the beginning of a string.

$ – Matches the end of a string.

[] – Creates a list of values to match. Can use hyphens to make a

range, such as “a-z” or “0-9”. Can use carats to mean “do not match

this.”

() – Creates a group of matched values.

\ – Do not interpret the next letter as a command. For example,

if we want to match a period instead of using a period to mean

“anything.” If used with a number, it becomes a reference to a

group.

Oracle also includes many Perl regular expression extensions, to match digits (\d),

non-digits (\D), word characters (\w), non-word characters (\W), whitespaces (\s), non-

whitespaces (\S), and many more.

 Regular Expression Examples
As an example, let’s say we want to order the launch vehicles by their name and their

version. But the names are confusing – sometimes they contain numbers and other

times they contain Roman numerals. We’d need to convert Roman numerals into

numbers and then separate the numbers, to properly sort the names. That process is a

lot of work for a sort order, so we’ll only include with the first few steps. First, let’s look at

the popular Canadian sounding rocket Black Brant and find names that look like Roman

numerals.

--Launch vehicle names with Roman numerals.

select lv_name

from launch_vehicle

where regexp_like(lv_name, '\W[IVX]+')

 and lv_name like 'Black Brant%'

order by lv_name;

Chapter 7 Query the Database with aDvanCeD seLeCt Features

156

LV_NAME

Black Brant I

Black Brant II

Black Brant IIB

Black Brant III

...

The key ingredient in the preceding query is the cryptic regular expression

'\W[IVX]+'. That expression finds any rows where the vehicle name contains a non-

word character followed by one or more of either “I”, “V”, or “X”.

The next step is to convert the Roman numerals to numbers. To simplify things we’re

going to cheat and just hard-code a few Roman numeral conversions. The important

part of the following query is the way REGEXP_REPLACE is used to break the name into

different pieces. After the name is broken apart, we can modify the Roman numeral

portion and then put the pieces back together.

--Convert Roman numerals and re-assemble pieces into a name.

select

 part_1||part_2||

 --This hard-coding is clearly not the best way to do it.

 case part_3

 when 'I' then '01'

 when 'II' then '02'

 when 'III' then '03'

 end||

 part_4 new_lv_name

from

(

 --Launch vehicles with Roman numerals, broken into parts.

 select

 regexp_replace(lv_name, '(.*)(\W)([IVX]+)(.*)', '\1') part_1,

 regexp_replace(lv_name, '(.*)(\W)([IVX]+)(.*)', '\2') part_2,

 regexp_replace(lv_name, '(.*)(\W)([IVX]+)(.*)', '\3') part_3,

 regexp_replace(lv_name, '(.*)(\W)([IVX]+)(.*)', '\4') part_4

 from launch_vehicle

Chapter 7 Query the Database with aDvanCeD seLeCt Features

157

 where regexp_like(lv_name, '\W[IVX]+')

 and lv_name like 'Black Brant%'

 order by lv_name

);

NEW_LV_NAME

Black Brant 01

Black Brant 02

Black Brant 02B

Black Brant 03

...

The regular expression in the preceding WHERE clause is still simple and just finds

the pattern. But the regular expression in the REGEXP_REPLACE has to find four different

patterns – anything at the beginning, a non-word character, the Roman numeral part,

and anything at the end. The parentheses create four groups, and the backslash and

number reference those groups.

Regular expressions can solve many problems, and there are several patterns worth

learning. The most popular example is how to use regular expressions to split a delimited

string into different parts. To split by a delimiter, we first use the CONNECT BY row trick to

generate extra rows. For each row, we match a group of characters that contain anything

other than the delimiter, with an expression like '[^,]'. Finally, in the REGEXP_SUBSTR

function we choose the LEVEL occurrence of the match. The following query is small but

uses a lot of features:

--Split a comma-separated string into its elements.

select regexp_substr(csv, '[^,]', 1, level) element

from

(

 select 'a,b,c' csv

 from dual

)

connect by level <= regexp_count(csv, ',') + 1;

Chapter 7 Query the Database with aDvanCeD seLeCt Features

158

ELEMENT

a

b

c

 Regular Expression Limitations
The cryptic syntax of regular expressions may make us feel like coding superheroes but

it’s very easy to make a mess. When using regular expressions, we must take extra care

to make our code readable. We must resist the urge to create one uber-expression, and

instead we must break our code into small pieces.

The examples in this section are good examples of what not to do. The examples

demonstrate the concepts of regular expressions, but we’re not close to our goal of

actually finding and replacing Roman numerals. If we look at all the different launch

names, we’ll notice that there are a huge number of exceptions to our simplistic rule.

Converting these Roman numerals is one of those “90-10” tasks; we easily built a

solution for 90% of the problem, but solving the remaining 10% will take 90% of our time.

The 90-10 tasks happen a lot when parsing text and we have to know our limitations.

Even for splitting strings, there are lots of cases that might break our simple regular

expressions, like an empty element. The real solution to splitting strings is to not store

delimited strings in the database in the first place.

Even tasks as seemingly simple as finding numbers can be annoyingly difficult.

Recreating the numeric literal syntax diagram from Chapter 4 requires a surprisingly

nasty regular expression. The Internet is full of half-baked answers that forget things like

an initial negative sign. And forget about validating email addresses – the official regular

expression to validate email addresses is over 6,000 characters long.

Finally, there are many tasks that are literally impossible to solve with one regular

expression. Figure 7-2 shows a hierarchy of formal languages. Even though regular

expressions are powerful tools, the regular languages they define are at the bottom

of the hierarchy. Many languages, such as HTML, XML, and almost all programming

languages, are context-free or higher. Regular expressions alone cannot fully parse

HTML, XML, and programming languages. Regular expressions can easily find many

patterns in complex languages, but finding simple patterns can give us a false sense

Chapter 7 Query the Database with aDvanCeD seLeCt Features

159

of confidence. We must be careful not to try to use a regular expression for a task that

requires a full language parser. We don’t want to invest time in a regular expression that

is 99% accurate but will never be 100% accurate.

Figure 7-2. “A graphical representation of the sets of languages included in the
Chomsky hierarchy.” by J. Finkelstein is licensed under CC BY-SA 3.0.

 Row Limiting
Sometimes we only want to get a subset of the results from our SQL statements.

Applications only display a certain number of rows at a time so our queries must return

the top N results. Oracle has a row limiting clause to let us specify exactly what subset of

rows to return. Unfortunately, the row limiting clause was not introduced until 12c, so we

still need to understand the old ROWNUM technique for limiting results. And sometimes we

need to limit rows with analytic functions, using ROW_NUMBER.

 Row Limiting Clause
The 12c row limiting clause lets us easily specify how many results to return from a

query. We can choose either a number of rows or a percentage of rows. The number can

be exact or can also return ties for the Nth number. We can also specify an offset, which

can help with pagination. However, the row limiting clause cannot instantly retrieve

rows from the middle of a result set and may lead to performance problems. For faster

pagination it might be better to keep a cursor open and iterate through the results.

Chapter 7 Query the Database with aDvanCeD seLeCt Features

https://en.wikipedia.org/wiki/File:Chomsky-hierarchy.svg
https://en.wikipedia.org/wiki/File:Chomsky-hierarchy.svg
https://commons.wikimedia.org/wiki/User:J._Finkelstein
https://creativecommons.org/licenses/by-sa/3.0/deed.en

160

The rows returned by the row limiting clause will respect the order by clause, if there

is one. Without the order by clause, the syntax will return the first N rows it finds. (Those

rows will be neither deterministic nor truly random. Remember – we can never assume

anything about the order of results unless we specify the order by clause.)

For example, let’s find the first three satellites, based on their launch date.

--First 3 satellites.

select

 to_char(launch_date, 'YYYY-MM-DD') launch_date,

 official_name

from satellite

join launch

 on satellite.launch_id = launch.launch_id

order by launch_date, official_name

fetch first 3 rows only;

LAUNCH_DATE OFFICIAL_NAME

----------- -------------

1957-10-04 1-y ISZ

1957-10-04 8K71A M1-10

1957-11-03 2-y ISZ

The official names are cryptic but you know those satellites. If you’re old enough, you

may have literally seen those satellites in the sky. The first two rows are Sputnik 1 and its

rocket, and the third row is Sputnik 2.

 ROWNUM
In 11g and lower the syntax for row limiting was a bit trickier. Even if we’re only using

version 12c and above, we should still be familiar with the old techniques, because we

will inevitably inherit old code.

The traditional way to get the top N rows is with the ROWNUM pseudo-column and an

inline view. ROWNUM returns the display order number for each row, starting with 1.

There’s a common mistake that everyone makes with ROWNUM; the ROWNUM

pseudo- column cannot be filtered in the same subquery as the ORDER BY. ROWNUM is

generated before the order by clause. If we filter by ROWNUM in the same subquery as the

Chapter 7 Query the Database with aDvanCeD seLeCt Features

161

order by clause, the query will return a few random rows and then order those random

rows. The following query is the only correct way to use ROWNUM filtering:

--First 3 satellites.

select launch_date, official_name, rownum

from

(

 select

 to_char(launch_date, 'YYYY-MM-DD') launch_date,

 official_name

 from satellite

 join launch

 on satellite.launch_id = launch.launch_id

 order by launch_date, official_name

)

where rownum <= 3;

LAUNCH_DATE OFFICIAL_NAME ROWNUM

----------- ------------- ------

1957-10-04 1-y ISZ 1

1957-10-04 8K71A M1-10 2

1957-11-03 2-y ISZ 3

 Analytic Function Row Limiting
More complex row limiting requires the ROW_NUMBER analytic function. The partition by

clause in ROW_NUMBER allows us to get the top N rows for multiple groups. The following

example returns the first two satellites of each year.

--First 2 satellites of each year.

select launch_date, official_name

from

(

 select

 to_char(launch_date, 'YYYY-MM-DD') launch_date,

 official_name,

 row_number() over

Chapter 7 Query the Database with aDvanCeD seLeCt Features

162

 (

 partition by trunc(launch_date, 'year')

 order by launch_date

) first_n_per_year

 from satellite

 join launch

 on satellite.launch_id = launch.launch_id

 order by launch_date, official_name

)

where first_n_per_year <= 2

order by launch_date, official_name;

LAUNCH_DATE OFFICIAL_NAME

----------- -------------

1957-10-04 1-y ISZ

1957-10-04 8K71A M1-10

1958-02-01 Explorer 1

1958-03-17 Vanguard I

...

 Pivoting and Unpivoting
Pivoting moves data from rows into columns, and unpivoting moves the columns back

to rows. Those features are useful when we want to summarize data for a report or want

to load summarized report data into a table. There’s a simple aggregation and UNION ALL

trick to pivot and unpivot data. Oracle also provides a PIVOT and UNPIVOT syntax that can

help simplify code. We should know both the old and new techniques, they are both still

useful.

Pivoting combines rows of data into a single row with more columns. Our relational

tables are often skinny, with just a few columns that list a type, a value, and a status. But

our reports are often wide, with one type per row and a column with the values for each

status. Figure 7-3 is a visual representation of the way pivoting and unpivoting change

the shapes of the results.

Chapter 7 Query the Database with aDvanCeD seLeCt Features

163

 Old Pivot Syntax
Let’s start with a simple grouping example – the counts of launch statuses per year. The

query returns skinny rows, with a different status for each row.

--Launch success and failure per year.

select

 to_char(launch_date, 'YYYY') launch_year,

 launch_status,

 count(*) status_count

from launch

where launch_category in ('orbital', 'deep space')

group by to_char(launch_date, 'YYYY'), launch_status

order by launch_year, launch_status desc;

LAUNCH_YEAR LAUNCH_STATUS STATUS_COUNT

----------- ------------- ------------

1957 success 2

1957 failure 1

1958 success 8

...

The preceding results are in a good format for further processing. But if we want to

display the results, we can fit more information on a single row. The following query

pivots the results, using the old-fashioned aggregation technique.

Figure 7-3. Visual representation of pivot and unpivot

Chapter 7 Query the Database with aDvanCeD seLeCt Features

164

--Pivoted launch successes and failures per year.

select

 to_char(launch_date, 'YYYY') launch_year,

 sum(case when launch_status = 'success' then 1 else 0 end) success,

 sum(case when launch_status = 'failure' then 1 else 0 end) failure

from launch

where launch_category in ('orbital', 'deep space')

group by to_char(launch_date, 'YYYY')

order by launch_year;

LAUNCH_YEAR SUCCESS FAILURE

----------- ------- -------

1957 2 1

1958 8 20

1959 13 10

...

The preceding results show more information per row because the status value was

pivoted into multiple columns. The pivoted columns make it much easier to compare

data across years. If we look at all the data, we discover that 1958 was by far the worst

year for launches, both in the number of failures and the percentage of failures. The large

number of failures was not just because rocket technology was new. There was a push to

cut corners and launch as soon as possible. That push was fueled by the cold war and the

Sputnik crisis.

 New Pivot Syntax
The following returns the same results as the preceding query but uses the new PIVOT

syntax. The pivot clause is given the aggregate function, the list of columns to pivot, and

the values to include.

--Pivoted launch success and failure per year.

select *

from

(

 --Orbital and deep space launches.

 select to_char(launch_date, 'YYYY') launch_year, launch_status

Chapter 7 Query the Database with aDvanCeD seLeCt Features

165

 from launch

 where launch_category in ('orbital', 'deep space')

) launches

pivot

(

 count(*)

 for launch_status in

 (

 'success' as success,

 'failure' as failure

)

)

order by launch_year;

For this small example the new syntax is more complex and larger than the old-

fashioned syntax. I always find the PIVOT syntax a bit weird and I have to look it up every

time I use it. The syntax doesn’t help until we have a large number of columns to pivot.

Even then, there is still a lot of manual typing – we still need to list each status, create

an alias, and possibly deal with nulls. In most cases we might as well stick with the old

SUM(CASE syntax.

 UNPIVOT
Unpivoting turns multiple columns into multiple rows. As an example of why we might

want to unpivot, look at the LAUNCH columns FLIGHT_ID1 and FLIGHT_ID2. Any time we

have multiple columns with the same names, but a number at the end, we should be

suspicious. Should those columns be stored in a separate table, to allow an unlimited

number of flight identifiers? What happens if a rocket launch has a third flight identifier?

Instead of having to add new columns, it might make sense to create a separate table to

store flight identifiers. (In this case, the flight identifiers don’t add much value, and it’s

not worth the trouble, but let’s pretend for the sake of the example.)

--Multiple FLIGHT_ID columns per launch.

select launch_id, flight_id1, flight_id2

from launch

where launch_category in ('orbital', 'deep space')

order by launch_id;

Chapter 7 Query the Database with aDvanCeD seLeCt Features

166

LAUNCH_ID FLIGHT_ID1 FLIGHT_ID2

--------- ---------- ----------

4305 M1-PS PS-1

4306 M1-2PS PS-2

4476 TV-3 Vanguard TV3

...

The old-fashioned way to convert the columns into rows uses a UNION ALL for each

column, shown as follows.

--Unpivot data using UNION ALL.

select launch_id, 1 flight_id, flight_id1 flight_name

from launch

where launch_category in ('orbital', 'deep space')

 and flight_id1 is not null

union all

select launch_id, 2 flight_id, flight_id2 flight_name

from launch

where launch_category in ('orbital', 'deep space')

 and flight_id2 is not null

order by launch_id, flight_id;

LAUNCH_ID FLIGHT_ID FLIGHT_NAME

--------- --------- -----------

 4305 1 M1-PS

 4305 2 PS-1

 4306 1 M1-2PS

 4306 2 PS-2

 4476 1 TV-3

 4476 2 Vanguard TV3

...

Chapter 7 Query the Database with aDvanCeD seLeCt Features

167

The following query uses the UNPIVOT syntax to return the same results:

--Unpivot data with UNPIVOT syntax.

select *

from

(

 select launch_id, flight_id1, flight_id2

 from launch

 where launch_category in ('orbital', 'deep space')

) launches

unpivot

(

 flight_name for

 flight_id in (flight_id1 as 1, flight_id2 as 2)

)

order by launch_id;

The preceding UNPIVOT query is much smaller than the original version and even

runs faster, whereas the PIVOT syntax is hardly any better than the original version and

isn’t any faster. The poor syntax and performance of PIVOT are unfortunate, because in

practice we’re much more likely to pivot data than to unpivot data.

One of the most common Oracle SQL questions is – how can we dynamically pivot

data, where we don’t have to specify all the columns to display? The simple answer is:

there is no dynamic pivot option. A more thorough answer is: Oracle does allow dynamic

pivoting, but only if we ask for the output to be in XML, which is then harder to consume.

An even more thorough answer is: we can dynamically pivot if we create advanced

dynamic SQL solutions, such as Method4 discussed in Chapter 20.

But ignore the answers in the previous paragraph. The real, unsatisfying answer is:

we don’t want to dynamically pivot our queries. Overly generic and dynamic solutions

are a huge pain for little gain. At some point we have to specify the available columns

or nothing is going to work. We need a model of our data to make our data useful. If we

don’t even know the columns, there’s not much we can do with the data. When we add

and remove columns from tables, those changes can have huge consequences. We don’t

want that kind of trouble with our SQL statements.

Chapter 7 Query the Database with aDvanCeD seLeCt Features

168

 Table References
There are many sources of relational data in Oracle. When we select from an object, that

object could be a table, view, materialized view, table function, synonym, remote object,

cluster, and others. Selecting from a table sounds like the easy, boring option. But Oracle

SQL provides a surprising number of different ways to get data from a table. Table data

can be selected point in time with flashback query, as a sample, or as specific partitions.

 Flashback
Flashback query lets us query data the way it used to look. Flashback can be a literal job-

saver when we have logical table corruption. Having a time machine for our tables can

help us quickly back out incorrect changes. Imagine if someone deleted rows from the

LAUNCH 9 minutes ago. We can look back in time and find the table as of 10 minutes ago

with this query:

--LAUNCH table as it looked 10 minutes ago.

select *

from launch as of timestamp systimestamp - interval '10' minute;

Whenever someone makes a bad change, try to find the changes with a flashback

query. But don’t wait, the clock is ticking. Flashback query uses Oracle undo data and

that data ages out. There may be a magic fix to our production data issue but that fix

is going to expire. It’s difficult to predict how long the undo data will be available, the

retention period depends on instance parameters and system activity.

Flashback has a VERSIONS BETWEEN syntax and multiple pseudo-columns that can

help us find exactly what change was made and when. We can combine flashback with

set operators like MINUS to find missing data.

In addition to querying data, flashback can also be used to restore tables and entire

databases. Those features share the name “flashback” but work with different storage

mechanisms – the recycle bin and flashback logs. Speak to your DBA if you need to do

frequent time traveling.

Chapter 7 Query the Database with aDvanCeD seLeCt Features

169

 Sample
Querying a small sample of data can help with testing, especially with large tables. The

sample clause lets us specify an estimated percent of table data to retrieve. By default,

the sampling is random and will return a slightly different result most times. If we want

a deterministic sample, we can specify a seed number. The following queries return

approximately 1% of the rows from the LAUNCH table.

--Sample query that returns a different number each time.

select count(*) from launch sample (1);

--Sample query that returns the same number each time.

select count(*) from launch sample (1) seed (1234);

The sample clause does not return results that are statistically random. And if the

sample size is small enough, there is a chance the query will return zero rows. If we need

to be precise with our randomness, we need to avoid SAMPLE and use ORDER BY DBMS_

RANDOM.VALUE instead. Unfortunately the DBMS_RANDOM approach is ridiculously slow.

 Partition Extension Clause
The partition extension clause lets us choose data from a specific set of partitions or

subpartitions. (Partitioning is briefly described in Chapter 9.) The partitions can be

referenced either by partition name or by the partition key value. For example, the

following queries read from a partitioned system table. (A better example would create

our own partitioned table. Since we don’t all have the partition option license, it is safer

to use the existing system tables.)

--Reference partition name.

select *

from sys.wrh$_sqlstat partition (wrh$_sqlstat_mxdb_mxsn);

--Reference partition key values.

select *

from sys.wrh$_sqlstat partition for (1,1);

Chapter 7 Query the Database with aDvanCeD seLeCt Features

170

Normally the partition extension clause is not necessary since partitioning is meant

to be invisible to the end user. We should be able to query a table, ask for a value, and let

Oracle automatically determine the partitions. In practice, Oracle partition pruning can’t

always figure out the partitions at compile time. For example, if we’re doing operations

that lock partitions, like direct-path writes, Oracle may have to lock the entire table,

unless we use the partition extension clause.

 Common Table Expressions
Common table expressions allow us to replace repetitive SQL logic with a single

subquery, function, or procedure. Common table expressions are defined at the top of

the SQL statement and can be referenced many times below. In Oracle, this feature is

also called subquery factoring, and the grammatically awkward “WITH clause.” Common

table expressions can help us simplify our queries, improve performance, solve tricky

recursive problems, and follow one of the cardinal rules of programming: don’t repeat

yourself. But we also need to be careful to not over-use this feature.

 Example
Let’s combine several of the advanced features to answer a frequent question: what

changed? By combining flashback queries (to get old data), set operators (to find

differences and combine results), and common table expressions (to avoid repeating

ourselves), we can find the precise changes made to a table.

Before we create the large query, let’s run some code to set up a test. Run the

following statements to make two pseudorandom changes to the table ENGINE_

PROPELLANT. This code removes one row and switches one value from “fuel” to “oxidizer,”

or vice versa.

--Delete and update a row from a not-so-important table.

delete from engine_propellant where rownum <= 1;

update engine_propellant

set oxidizer_or_fuel =

 case when oxidizer_or_fuel = 'fuel' then 'oxidizer' else 'fuel' end

where rownum <= 1;

Chapter 7 Query the Database with aDvanCeD seLeCt Features

171

For the next 5 minutes, the following query will show all the changes made by the

preceding statements. This query is a bit complicated for an example, but this pattern

of finding differences through set operators and common table expressions is worth

learning. I build a query similar to the following at least once a month.

--Changes made to ENGINE_PROPELLANT in past 5 minutes.

with old as

(

 --Table as of 5 minutes ago.

 select *

 from engine_propellant

 as of timestamp systimestamp - interval '5' minute

),

new as

(

 --Table right now.

 select *

 from engine_propellant

)

--Both row differences put together.

select *

from

(

 --Rows in old table that aren't in new.

 select 'old' old_or_new, old.* from old

 minus

 select 'old' old_or_new, new.* from new

)

union all

(

 --Rows in new table that aren't in old.

 select 'new' old_or_new, new.* from new

 minus

 select 'new' old_or_new, old.* from old

)

order by 2, 3, 1 desc;

Chapter 7 Query the Database with aDvanCeD seLeCt Features

172

OLD_OR_NEW ENGINE_ID PROPELLANT_ID OXIDIZER_OR_FUEL

---------- --------- ------------- ----------------

old 2 100 fuel

new 2 100 oxidizer

old 62 1 fuel

--Don't forget to rollback the changes:

rollback;

The results show the row that was changed – it has a value for both “old” and

“new,” and the OXIDIZER_OR_FUEL column changed. The results also show the row that

was deleted – the last row that is listed in “old” but not in “new.” The common table

expressions are like macros for our SQL statement and help us avoid having to repeat the

“as of 5 minutes ago” logic. We could have used a view instead, but then we would have

had to create and maintain separate objects just for one query.

 PL/SQL Common Table Expressions
Oracle 12.1 introduced the ability to use PL/SQL declarations in the WITH clause. Those

functions and procedures come in handy when we need procedural logic but we’re

on a system with limited privileges and cannot create a function. Let’s use a PL/SQL

declaration to solve another common business problem: finding numeric values in text

fields. As discussed in Chapter 4, determining if a string is a number is more complicated

than most programmers appreciate. Using a regular expression is a bad idea because

we’ll forget to check for things like negative signs, decimals, etc. The following code looks

for numeric values in FLIGHT_ID1:

--Launches with a numeric FLIGHT_ID1.

with function is_number(p_string in varchar2) return varchar2 is

 v_number number;

begin

 v_number := to_number(p_string);

 return 'Y';

exception

 when value_error then return 'N';

end;

Chapter 7 Query the Database with aDvanCeD seLeCt Features

173

select

 to_char(launch_date, 'YYYY-MM-DD') launch_date,

 flight_id1

from launch

where flight_id1 is not null

 and is_number(flight_id1) = 'Y'

order by 1,2;

/

LAUNCH_DATE FLIGHT_ID1

----------- ----------

1942-06-13 2

1942-08-16 3

1942-10-03 4

...

(Version 12.2 finally introduced safe conversion modes for many functions. In that

version the code could be simplified by using this condition: TO_NUMBER(FLIGHT_ID1

DEFAULT NULL ON CONVERSION ERROR) IS NOT NULL.)

The PL/SQL WITH syntax is a bit strange and many IDEs have problems parsing

it. Even SQL*Plus treats the preceding statement a bit differently than normal SELECT

statements, which is why there’s a slash at the end of the preceding code.

 Performance and Over-use
Common table expressions can help improve performance in some cases. If the

common table expression is referenced two or more times, Oracle may materialize the

results by storing them in a temporary table. Materializing can reduce the number of

times the tables are read. Oracle automatically decides whether it’s worth transforming

intermediate results into a temporary table, but we can force the decision with the hint

/*+MATERIALIZE*/. Also, the PL/SQL WITH clause is tightly integrated with SQL and can

run faster than regular functions and procedures.

But many SQL developers over-use common table expressions. The performance

benefits of materializing results only help if the common table expression is called more

than once. And caring too much about reducing the overhead of PL/SQL functions

implies we’re not using enough SQL. As discussed in Chapter 6, the top-down data flow

Chapter 7 Query the Database with aDvanCeD seLeCt Features

174

of common table expressions is a bad thing. Common table expressions that are only

used once will increase the context of our SQL statements and make our statements

harder to debug and understand.

Common table expressions are a great feature that can save a lot of code and

improve performance, if used correctly. Additionally, common table expressions can

refer to themselves. Recursive common table expressions are a powerful feature and are

described in the next section.

 Recursive Queries
When data references itself an unknown number of times, we must use recursive or

hierarchical queries. If data only references itself a single time, for example, if we want to

find the parent record, we can write that query with a self-join. Or if our row only needs

to access the one row before it, we can write that query with the analytic function LAG.

But when we want the parent’s parent, or the previous row’s previous row, or we want to

generate something that looks like a tree, we need Oracle’s recursive query syntax.

Oracle provides two ways to process hierarchical data: the original CONNECT BY

syntax and the newer recursive common table expressions syntax (also known as

recursive subquery factoring). Newer syntax is usually the best option, but in this case

the newer syntax is not always better. Both syntaxes have their advantages. The CONNECT

BY syntax is the original syntax, is less wordy, and is more convenient for handling

traditional hierarchical data. The recursive common table expression syntax is based

on a standard, wordier than CONNECT BY, not as convenient for processing traditional

hierarchical data, but more powerful and better suited to advanced queries. Each syntax

seems to be a better fit for certain problems. If one style is giving us trouble, with either

the syntax or performance, try the other style.

 CONNECT BY Syntax
In the original syntax we start with a set and then use CONNECT BY conditions to define

how the set joins to itself. Conditions in the CONNECT BY clause can use the special PRIOR

operator, which lets us reference the value from the previous row of the set. Optional

START WITH conditions let us pick the initial rows. Picking the initial rows is important, to

prevent duplicates. If we’re building trees of results from a flat table, we only want to start

building trees from the root. If we build trees starting from the root, and starting from

every other level, we’ll end up with many subtrees.

Chapter 7 Query the Database with aDvanCeD seLeCt Features

175

The CONNECT BY syntax also provides useful pseudo-columns such as LEVEL. LEVEL

is a number that tells us what level of the tree each row is on. CONNECT_BY_ROOT returns

the value from the root row. SYS_CONNECT_BY_PATH walks the tree and creates a string

aggregation of all the values. The ORDER SIBLINGS BY clause preserves the tree structure

of the results.

For example, let’s look at the ORGANIZATION table. That table is used frequently in the

data set; there are organizations for the launch, satellite, stage, engine, and more. Each

organization has a parent organization, which can have a parent organization, etc. If we

wanted to count launches or satellites per organization, it might help to count by the

top-level organization. First, we need to generate a hierarchy of organizations with this

query:

--Organization hierarchy with CONNECT BY.

select

 lpad(' ', 2*(level-1)) || org_code org_code,

 parent_org_code parent,

 org_name

from organization

connect by prior org_code = parent_org_code

start with parent_org_code is null

order siblings by organization.org_code;

ORG_CODE PARENT ORG_NAME

--------- ------ --------

...

USAF United States Air Force

 ...

 HAFB USAF Holloman Air Force Base

 ...

 HADC HAFB Holloman Air Development Center

 HAM HADC Holloman Aeromedical Lab, Holloman ...

 ...

The preceding partial results show one of the many trees. Unsurprisingly, there are

many organizations under the United States Air force. The results are formatted like a

tree, with the LPAD trick that multiplies the spaces by the LEVEL. The query starts with the

root organizations at the top – the ones where PARENT_ORG_CODE IS NULL. The SIBLINGS

Chapter 7 Query the Database with aDvanCeD seLeCt Features

176

in the order by clause ensure that the tree order is preserved. The CONNECT BY condition

is the most difficult part of the query and requires some thought. Imagine we started

with the USAF row and are trying to find the second row. To decide if each row is in the

tree, we need to compare the current PARENT_ORG_CODE to the PRIOR ORG_CODE.

Don’t feel bad if these recursive queries aren’t making sense yet. Recursive queries

are notoriously complicated, it might take a few times before the recursion feels natural.

 Recursive Common Table Expressions
Let’s recreate the same results with the newer recursive common table expression

syntax. In this syntax we define a table in the WITH clause, but this time we also need

to predefine the column names. Inside the common table expression there are two

subqueries. The first subquery primes the pump by generating the initial rows. The

second subquery generates parent or child rows by joining a table to the common table

expression itself. Finally, the common table expression is queried to get the results.

--Organization hierarchy from recursive CTE.

with orgs(org_code, org_name, parent_org_code, n, hierarchy) as

(

 --Start with parent rows:

 select org_code, org_name, parent_org_code, 1, org_code

 from organization

 where parent_org_code is null

 union all

 --Add child rows by joining to parent rows:

 select

 organization.org_code,

 organization.org_name,

 organization.parent_org_code,

 n+1,

 hierarchy || '-' || organization.org_code

 from orgs parent_orgs

 join organization

 on parent_orgs.org_code = organization.parent_org_code

)

Chapter 7 Query the Database with aDvanCeD seLeCt Features

177

select

 lpad(' ', 2*(n-1)) || org_code org_code,

 parent_org_code parent,

 org_name

from orgs

order by hierarchy;

The preceding query returns the same results as the CONNECT BY version, but uses

more code to do the same thing. There’s no convenient LEVEL or SIBLINGS syntax, so

we have to create those ourselves, with the “n” column. The “n” starts with 1 and adds

1 at each new level. And to order by siblings, we need to create a string to represent the

whole tree and then order by that tree. The “hierarchy” field represents a tree by starting

with the org code and appending new org codes at each level.

For simple examples the CONNECT BY syntax is best. For complex examples, where

we need more fine-grained control over how the statement recurses, the common table

expression syntax is best.

No matter which syntax we use, recursive queries can get painfully difficult. Making

sense of recursive queries requires creating an intricate mental model of a tree. When

creating recursive queries, we must be careful to keep our inline views small and to

thoroughly document everything.

 XML
Oracle is a multi-model database that supports much more than just relational data.

This book is about SQL development and focuses on relational data, but there are many

times when the relational model needs to merge with semi-structured data stored

as XML. There are whole manuals written about the subject, such as the XML DB

Developer’s Guide. This section only shows the basics, but keep in mind that Oracle is

designed to handle vastly more complicated scenarios.

 XMLType
Extensible Markup Language documents can be created, stored, and processed in

Oracle. XML is semi-structured, not unstructured. We never want to allow invalid XML,

so we don’t want to just throw XML into a string field. XML data should be stored as

Chapter 7 Query the Database with aDvanCeD seLeCt Features

178

an XMLType, which will automatically validate the structure. Converting text into an

XMLType is trivial; just pass the text into the default constructor like this:

--Convert text to XML.

select xmltype('<a>') from dual;

The output of the preceding statement depends on our IDE. Not every program

understands XMLType. Programs may display the result as a generic message, or as a

text string, or perhaps in an XML editor. The text itself may look different. The results

could be “<a>”, “<a/>”, or some other equivalent. Just like relational data has display

properties that don’t matter (such as row order), XML also has display properties that

don’t matter (such as tag style and insignificant whitespace).

Converting from an XMLType back to text is a little trickier. When using object types

like XMLType, there must be an alias, a column name, and parentheses for function calls

(even if there are no parameters). In the following code, ideally we would only need to

use the expression XML_COLUMN.GETCLOBVAL. But the real code is a bit more complicated.

--Convert to XMLType and convert back to CLOB.

select table_reference.xml_column.getClobVal()

from

(

 select xmltype('<a>') xml_column

 from dual

) table_reference;

Just as we never want even a single byte of corrupt relational data, we never want a

single corrupt XML. Always store XML as XMLType to prevent invalid data. Corruption in

even one of our XML files may prevent us from processing any of our files. The following

code shows an example of what happens when we try to load bad XML into XMLType.

select xmltype('<a></a') from dual;

ERROR:

ORA-31011: XML parsing failed

ORA-19202: Error occurred in XML processing

LPX-00007: unexpected end-of-file encountered

ORA-06512: at "SYS.XMLTYPE", line 310

ORA-06512: at line 1

Chapter 7 Query the Database with aDvanCeD seLeCt Features

179

Storing XML in XMLType columns also gives us more storage options. Oracle can store

the XML internally in different, optimized formats. And we can also create XML indexes

on properly typed XML data.

 DBMS_XMLGEN and Creating XML
There are many ways to create XML and the simplest technique is the function DMBS_

XMLGEN.GETXML. That function accepts any SQL statement and returns the results as a

single XML file. The results are a CLOB but it’s easy to convert that CLOB into an XMLType

if necessary. Chapter 20 shows a few advanced tricks we can do with DBMS_XMLGEN. For

our current example, let’s convert some of our launch data into an XML file.

--Create XML file for launch data.

select dbms_xmlgen.getxml('

 select launch_id, launch_date, launch_category

 from launch

 where launch_tag = ''1957 ALP''

 ')

from dual;

<?xml version="1.0"?>

<ROWSET>

 <ROW>

 <LAUNCH_ID>4305</LAUNCH_ID>

 <LAUNCH_DATE>04-OCT-57</LAUNCH_DATE>

 <LAUNCH_CATEGORY>orbital</LAUNCH_CATEGORY>

 </ROW>

</ROWSET>

Oracle automatically adds an XML prologue (the version information at the top)

and creates a “ROWSET” element for all the results, a “ROW” element for each row, and

then one element for each column value. There may be issues with the type conversions.

For example, the preceding LAUNCH_DATE format is terrible because my session was set

to use a two-digit year format. It would be better to do the conversion ourselves in the

SQL statement, like with an expression such as TO_CHAR(LAUNCH_DATE, 'YYYY-MM-DD')

LAUNCH_DATE.

Chapter 7 Query the Database with aDvanCeD seLeCt Features

180

Oracle SQL has many other ways to create more precise XML statements. We can

control the element names, attributes, and other features, using SQL functions such as

XMLELEMENT, XMLATTRIBUTES, XMLAGG, and XMLFOREST. XML data can be modified with

SQL functions like INSERTXML*, UPDATEXML, and DELETEXML.

Oracle also has multiple ways to read and process XML data. There are SQL

functions like XMLQUERY and EXTRACTVALUE, PL/SQL packages like DBMS_XML*, and

interfaces for other programming languages.

 XMLTABLE
The function XMLTABLE is the most convenient and powerful way to access XML stored

in the database. XMLTABLE accepts at least three parameters: an XQuery string to find

the relevant elements, the XML column to read, and a path for each column we want to

project.

Mapping SQL and XML has a few quirks. SQL keywords are case insensitive, whereas

XML is case sensitive. Many minor XML mistakes won’t throw errors, but will instead

return null or no rows. But when everything is done correctly, we can quickly turn an

XML file into relational data.

For our example, we must first create XML data, which is easy in Oracle SQL. The

following code converts the entire LAUNCH table into LAUNCH_XML.

--Create a single XML file for launch data.

create table launch_xml as

select xmltype(dbms_xmlgen.getxml('select * from launch')) xml

from dual;

The following is an XMLTABLE query that reads from LAUNCH_XML. This query counts

the number of launches per launch category.

--Count launches per category using LAUNCH_XML table.

select launch_category, count(*)

from launch_xml

cross join xmltable(

 '/ROWSET/ROW'

 passing launch_xml.xml

 columns

Chapter 7 Query the Database with aDvanCeD seLeCt Features

181

 launch_id number path 'LAUNCH_ID',

 launch_category varchar2(31) path 'LAUNCH_CATEGORY'

)

group by launch_category

order by count(*) desc;

LAUNCH_CATEGORY COUNT(*)

----------------- --------

suborbital rocket 48880

military missile 12641

orbital 5483

...

The preceding results are normal relational data. We could have plugged that

XMLTABLE query into an inline view and used that inline view as part of a larger query.

The results show why many of our sample queries filter by the launch category. Most of

the launches in the space data set are for weather experiments and military tests. But the

most interesting launches are the ones that go into space and try to stay there.

 XML Programming Languages
Oracle XML features include several powerful languages. The XMLISVALID function can

validate an XMLType against an XML schema. The XMLTRANSFORM function can apply XSLT

(eXtensible Stylesheet Language Transformations) to XML. Those transformations can

be used to convert XML into HTML, PDF, or other formats. The XQuery processing in

XMLTABLE allows FLWOR expressions (for, let, where, order by, return). For example, we

can use XQuery to create a simple row generator:

--XQuery FLWOR row generator.

select *

from xmltable

(

 'for $i in xs:integer($i) to xs:integer($j) return $i'

 passing 1 as "i", 3 as "j"

 columns val number path '.'

);

Chapter 7 Query the Database with aDvanCeD seLeCt Features

182

VAL

 1

 2

 3

I’m going to stop listing XML features before this chapter looks like an alphabet soup.

There’s a huge range of SQL functionality that can help us generate, read, and process

XML data.

 JSON
Similar to XML, the multi-model Oracle database can also be a JSON database.

JSON is newer than XML and doesn’t have as much support in the database. Version

12.1 introduced reading JSON, and version 12.2 introduced generating JSON. JSON

functionality is growing along with its popularity, and there is even a whole manual

named JSON Developer’s Guide. Similar to XML, JSON can be generated, read, and

processed by Oracle.

JSON stands for JavaScript Object Notation. JSON is a file format built on top of

two simple ideas: a collection of objects each with a name and value, and arrays. For

example, this is a valid JSON document that contains one string named “string” and an

ordered array of two numbers named “array”: {"string":"a", "array":[1,2]}.

 Build and Store JSON in the Database
Oracle didn’t provide convenient ways to generate JSON until version 12.2. In older

versions we need to build the string ourselves, perhaps using LISTAGG and other

expressions. In 12.2, our sample JSON string can be generated from this simple SQL

statement:

--Simple JSON example.

select json_object('string' value 'a', 'array' value json_array(1,2))

from dual;

Chapter 7 Query the Database with aDvanCeD seLeCt Features

183

Unlike XML, JSON is stored in a regular data type such as VARCHAR2 or

CLOB. Columns are marked as JSON with a constraint, such as CONSTRAINT SOME_

TABLE_CK CHECK (SOME_COLUMN IS JSON). For the next examples in this chapter, let’s

create a simple table to hold launches:

--Create table to hold JSON launch data.

create table launch_json

(

 launch_id number,

 json clob,

 constraint launch_json_pk primary key(launch_id),

 constraint launch_json_ck check (json is json)

);

Unfortunately, Oracle does not have a JSON equivalent of DBMS_XMLGEN.GETXML.

Instead we have to use a combination of functions like JSON_ARRAY (to convert a list into

an array of values), JSON_OBJECT (to convert values into an object), and JSON_ARRAYAGG

(to combine a bunch of JSON objects into one object). The syntax isn’t as convenient

as XML, and we need to list each column or value. There’s no SELECT * available. The

following statement converts LAUNCH into LAUNCH_JSON, but for brevity the statement

only includes a few columns.

--Populate LAUNCH_JSON with some of the LAUNCH data.

insert into launch_json

select

 launch_id,

 json_object

 (

 'launch_date' value to_char(launch_date, 'YYYY-MM-DD'),

 'flight_ids' value json_array(flight_id1, flight_id2)

) json

from launch

where launch_category in ('orbital', 'deep space');

commit;

Chapter 7 Query the Database with aDvanCeD seLeCt Features

184

The preceding JSON table is a bit different than the XML table we created. While the

XML table stored everything in a single XML file, LAUNCH_JSON has one JSON string per

row. We could have reversed it, and stored one XML file per line, and put everything in

a single JSON string. Both techniques are valid, which one we use depends on the data

and how the data is accessed.

 Querying JSON
The JSON data we created can be viewed as simple strings with the following query:

--View JSON data in LAUNCH_JSON.

select to_char(json) launch_data

from launch_json

order by launch_id;

LAUNCH_DATA

{"launch_date":"1957-10-04","flight_ids":["M1-PS","PS-1"]}

{"launch_date":"1957-11-03","flight_ids":["M1-2PS","PS-2"]}

{"launch_date":"1957-12-06","flight_ids":["TV-3","Vanguard TV3"]}

...

The preceding results show us how JSON works but the results aren’t useful in

SQL. The great part about JSON in SQL is that the columns are easily accessible with a

few syntax extensions. Like with XML, to access the data we must use a table alias. Then

we add a dot, followed by the object name. For arrays, we can use square brackets and

numbers, starting with 0.

--Simple JSON query on table LAUNCH_JSON.

select

 launch_id,

 substr(launch_json.json.launch_date, 1, 10) launch_date,

 launch_json.json.flight_ids[0] flight_id1,

 launch_json.json.flight_ids[1] flight_id2,

 launch_json.json.flight_ids[2] flight_id3

from launch_json launch_json

order by launch_date;

Chapter 7 Query the Database with aDvanCeD seLeCt Features

185

LAUNCH_ID LAUNCH_DATE FLIGHT_ID1 FLIGHT_ID2 FLIGHT_ID3

--------- ----------- ---------- ------------ ----------

4305 1957-10-04 M1-PS PS-1

4306 1957-11-03 M1-2PS PS-2

4476 1957-12-06 TV-3 Vanguard TV3

...

The preceding query generates relational data from JSON. Like with XML, there

are a few quirks when mapping to SQL. For example, the preceding query references

a third FLIGHT_ID, even though we cannot possibly have a third flight ID. That mistake

demonstrates one of the pitfalls of semi-structured data – our queries can be wrong but

will not generate a compilation error.

For those of us stuck with versions of Oracle lower than 12.1, the most popular

choice for working with JSON is the open source project PL/JSON. Even for the newer

versions of Oracle, if we need advanced JSON functionality, it might be worth looking

into that program, although PL/JSON is more resource intensive than the native features.

We don’t want to over-use XML and JSON. Theoretically we could store our entire

database in a single XML or JSON value; but then why are we using a database? The

extra dynamic abilities of semi-structured data are tempting but there must be a model

somewhere. To query files they must have some type of dependable structure or else

the files are useless. Even though Oracle can make XML and JSON look like a table, the

mapping isn’t perfect. Querying XML and JSON is not nearly as convenient as querying

relational data. Despite all the functionality built into Oracle, the best way to load XML

and JSON into the database is probably to convert the files to rows and columns.

 National Language Support
Internationalization and localization are complicated. Oracle’s National Language

Support architecture lets us store, process, and display information for any language

and locale. Even if we’re only storing simple English text, we still need to be aware of

character sets, length semantics, NLS comparing and sorting, and display formats. These

topics apply to all programmers, no matter how much we try to wish them away.

Chapter 7 Query the Database with aDvanCeD seLeCt Features

186

 Character Sets
Oracle has great character set support but also has horrible character set defaults.

If possible, our databases should always use UTF8, instead of old character sets like

US7ASCII, WE8ISO8859P1, WE8MSWIN1252, etc. Oracle has officially recommended

UTF8 for a long time but inexplicably didn’t default to UTF8 until version 12.2.

A lot has been written about the character set differences, but the trade-off boils

down to: UTF8 supports every character but may be slightly larger. Unless we have

specific, objective reasons to not use UTF8, it would be foolish to pick something else.

I’ve seen many problems caused by using old character sets and many weird bugs

caused by databases that were later converted to UTF8. We need to choose the correct

character set from the start of our project. The examples in this section won’t work

correctly if our database does not use UTF8.

There are Unicode data types NVARCHAR2, NCLOB, NCHAR, and N'' text literals. These

types exist in case we are using an old character set, but need to support a few special

columns of Unicode data. These data types use UTF16 or UCS2, which are slightly

different, but compatible with UTF8. Ideally we should never need to use the “N” data

types.

When dealing with character set issues, the Oracle functions DUMP and UNISTR come

in handy. DUMP displays the internal representation of data, as discussed in Chapter 3.

UNISTR lets us create Unicode characters even if our clients don’t support Unicode.

Most IDEs support UTF8, but don’t forget that our installation scripts might be run by a

misconfigured SQL*Plus client.

If we’re worried our source code files may get corrupted, the safest way to store non-

ASCII data is with the UNISTR function. For example, the column LAUNCH.ORG_UTF8_NAME

contains many non-ASCII characters. Loading the UTF8 data would be safer if the strings

were defined like this:

--Store unicode characters in a text file of any encoding.

select unistr('A\00e9ro-Club de France') org_utf8_name

from dual;

ORG_UTF8_NAME

Aéro-Club de France

Chapter 7 Query the Database with aDvanCeD seLeCt Features

187

Notice the “é” in the preceding output. In practice, the UNISTR syntax is too

cumbersome to use frequently. The function is only helpful when we have text that is

almost entirely ASCII with just a few exceptions.

 Length Semantics
How we count the length of strings has important consequences. Oracle defaults to byte

length semantics, where string size is measured by the number of bytes. Sometimes

we need to change to character length semantics, where string size is counted by the

number of characters. When we use varying width character sets, like UTF8, we need to

remember that X bytes does not always equal X characters.

The following code demonstrates the importance of character length semantics.

If we create a table with a column of the type VARCHAR2(1), that column can only

store 1 byte of data. When we try to insert a single multi-byte character, the

example raises the exception “ORA-12899: value too large for column

“SCHEMA”.“BYTE_SEMANTICS_TEST”.“A” (actual: 2, maximum: 1)”. The error happens

because the character being inserted is the non-ASCII “é” that doesn’t fit in 1 byte, when

using UTF8. (But if we’re using an extended-ASCII character set, the following code

might work because the character may fit in 1 byte.)

--Byte length semantics causes an error.

create table byte_semantics_test(a varchar2(1));

insert into byte_semantics_test values('é');

If we add the keyword CHAR after the number in the data type definition, Oracle uses

character length semantics instead. Now the column will fit one character, regardless of

how many bytes that character uses.

--Character length semantics works correctly.

create table character_semantics_test(a varchar2(1 char));

insert into character_semantics_test values('é');

Even if we think our database only contains ASCII characters, chances are good our

database will eventually contain word processing markup characters. For example, the

Microsoft smart quote might look like a regular quote but may use 2 bytes instead of 1.

Chapter 7 Query the Database with aDvanCeD seLeCt Features

188

 NLS Comparing and Sorting
Text comparisons and sorting are done by binary values by default. Binary sorting means

that two strings are only considered equal if they have the same internal representation.

And characters are ordered based on their numeric value in the character set. Binary

sorting is why uppercase characters show up before lowercase characters; “A” is number

65 in ASCII, and “a” is number 97 in ASCII. (The first 127 ASCII characters work the same

way in UTF8.)

The parameters NLS_COMP and NLS_SORT enable us to change the comparison and

sorting behavior to be more linguistically meaningful. We can compare and sort values

regardless of case, or accents, or according to the rules of a specific language.

For example, let’s find the French aviation club founded by Jules Verne in 1898. The

“Aéro-Club de France” is in the space data set because that organization was involved

with launching Sputnik 41. Let’s find the organization without having to type the

accented character:

--Use accent-independent linguistic comparison and sorting.

alter session set nls_comp=linguistic;

alter session set nls_sort=binary_ai;

select org_utf8_name

from organization

where org_utf8_name like 'Aero-Club de France%';

ORG_UTF8_NAME

Aéro-Club de France

The NLS_COMP and NLS_SORT parameters can be set at the session or system level in

all versions of Oracle. In version 12.2 the parameters can also be set per column, per

table, per schema, or per statement. But don’t go overboard – there may be performance

penalties for using non-binary sorting and comparisons. If index trees are built based on

binary comparisons, the trees cannot be traversed using a linguistic comparison. If our

statements can’t use indexes, performance may be horrendous.

NLS capabilities are also available through NLS_* function. When we don’t want to

change parameters, we can call an NLS function precisely when needed. For example,

most of the space data set works fine with binary sorting and comparisons. But if we’re

Chapter 7 Query the Database with aDvanCeD seLeCt Features

189

using the internationalized names for sorting, by default the order may not make sense.

We might expect “Aéro-Club de France” to show up next to other organizations with

names like “Aero.” But by default that string shows up somewhere else:

--Regular sort.

select org_utf8_name

from organization

order by org_utf8_name;

ORG_UTF8_NAME

...

Aeritalia Sistemi Spaziali (Torino)

AeroAstro, Inc

...

The NLSSORT function with BINARY_AI sorting displays “Aéro-Club de France” in the

right place:

--Accent independent sort.

select org_utf8_name

from organization

order by nlssort(org_utf8_name, 'nls_sort=binary_ai');

ORG_UTF8_NAME

...

Aeritalia Sistemi Spaziali (Torino)

Aéro-Club de France

AeroAstro, Inc

...

 Display Formats
NLS functionality is also important for displaying data. There are a dozen parameters

that control the format of dates, timestamps, money, error messages, and numbers.

The most popular and abused parameter is NLS_DATE_FORMAT. Like with almost all

parameters, there is a hierarchy of ways that NLS_DATE_FORMAT can be applied. That

Chapter 7 Query the Database with aDvanCeD seLeCt Features

190

parameter can be set per database, per session, or per function call. We should never

assume a specific value of NLS_DATE_FORMAT at the database level. Many tools and

programs automatically change the session settings, overriding the database settings.

NLS_DATE_FORMAT and similar parameters are only for ad hoc display formatting.

Never rely on an implicit date format for processing. The following code, looking for the

first satellite launch on October 4, 1957, is dangerous. Depending on our IDE’s settings,

the code may fail with the error “ORA-01858: a non-numeric character was found where

a numeric was expected.”

--Dangerous NLS_DATE_FORMAT assumption.

select *

from launch

where trunc(launch_date) = '04-Oct-1957';

The following code uses an explicit date format conversion with the TO_CHAR

function. It is much safer than the previous code. But even this version has problems.

Not all languages use the same month abbreviations, and “Oct” is not always the correct

abbreviation for “October.” But using an explicit date format in our programs is still much

safer. Chapter 15 explains how to make this code completely safe with date literals.

--Somewhat safe date format conversion.

select *

from launch

where to_char(launch_date, 'DD-Mon-YYYY') = '04-Oct-1957';

 Summary
This chapter briefly introduced many advanced SELECT features. Each topic could

easily fill an entire chapter, and some of them could fill an entire book. Don’t expect to

remember the syntax details. It’s more important we remember the features and patterns

and when to use them. SQL is easy to learn but hard to master.

This is the longest and most code-intensive chapter. Selecting data is the most

important part of database operations. But ultimately we need to create and change

data. The next chapter discusses advanced features for modifying our data.

Chapter 7 Query the Database with aDvanCeD seLeCt Features

191
© Jon Heller 2019
J. Heller, Pro Oracle SQL Development, https://doi.org/10.1007/978-1-4842-4517-0_8

CHAPTER 8

Modify Data with
Advanced DML
Now that we learned how to write advanced SQL statements to retrieve data, it is time to

learn how to write advanced SQL statements to change data. Oracle Data Manipulation

Language (DML) lets us insert, update, and delete data.1

Oracle provides four main statements for changing data: INSERT, UPDATE, DELETE,

and MERGE. Each of these statements has advanced options specific to that command.

There are also advanced features relevant to all DML statements: updatable views, hints,

error logging, and the returning clause. Some additional commands are not technically

DML statements but are used to help us change data: TRUNCATE, COMMIT, ROLLBACK,

SAVEPOINT, ALTER SYSTEM, ALTER SESSION, and others. Using and modifying data not

stored in Oracle is challenging, and Oracle has many different options for file input and

output. Finally, although PL/SQL is mostly outside the scope of this book, there are PL/

SQL packages we need to use to manage our data.

This chapter, like all chapters, assumes you are already familiar with basic SQL

concepts. Each section is going to jump right into an advanced feature. To save space,

the examples directly modify tables in the data set. Remember to roll back the changes

when you’re done with each example.

1 Arguably a SELECT statement is also a DML statement, especially a SELECT FOR UPDATE that
locks rows. SELECT doesn’t permanently change tables but it does manipulate data. In practice,
developers treat SELECT different than other statements, so when this book says “DML,” it does
not include a SELECT statement.

192

 INSERT
Oracle SQL has a multi-table insert operation to let us insert data into multiple tables in

one statement. Multi-table inserts are useful when we have one source that populates

multiple destinations. The INSERT ALL syntax was intended to add data to multiple

tables, but in practice the syntax is most commonly used to generate data and insert

multiple rows into the same table.

For example, let’s say we want to load new fuels into the PROPELLANT table. There are

several ways to generate data, and previous chapters already demonstrated the UNION

ALL trick. The following code demonstrates the INSERT ALL trick:

--Generate new PROPELLANT rows.

insert all

into propellant values (-1, 'antimatter')

into propellant values (-2, 'dilithium crystals')

select * from dual;

Note how the preceding INSERT ALL does not use sequences, but instead hard-codes

the primary keys. Hard-coding is necessary because INSERT ALL only increments the

sequence once per statement, not once per reference.

There’s a minor style issue with the INSERT ALL statement – the preceding code

doesn’t list all the column names. In a real SQL statement, we wouldn’t want to waste

so much space repeating the same list of columns. Also, excluding the column names

future-proofs the query. If a future version of the table adds a column, the preceding

statement would raise an exception, instead of silently writing bad data. On the other

hand, listing the column names ensures the values go in the right columns, even if the

column order changes. Excluding column names is a debatable style choice.

The INSERT ALL trick is neat, but the UNION ALL trick is better for generating data.

The INSERT ALL statement is slower to parse than UNION ALL, especially for large

statements with hundreds of rows.

If our applications are generating lots of data, an INSERT ALL is better than multiple

INSERT statements. But an INSERT ALL is not as good as using the application’s batching

API. Don’t get carried away with INSERT ALL. It’s a neat trick, but it’s not meant for

generating large amounts of data.

INSERT ALL also supports conditional logic. We can read from a large source table

and use WHEN-THEN-ELSE logic to decide which rows go in which destination table.

Chapter 8 Modify data with advanCed dML

193

 UPDATE
There’s not a lot of exciting features specific to UPDATE statements. Most of the advanced

features and side effects of UPDATE also apply to other DML commands and will be

discussed in later sections. But there are a few UPDATE topics worth discussing.

UPDATE always performs the same amount of work regardless of whether the values

change. Updating a column to itself is just as expensive as updating the column to a

different value. If we only want to update some of the rows, we should filter out the rows

that don’t change, not just set the values to themselves. The following statement doesn’t

change anything, but the statement still generates REDO, UNDO, and row locks. (REDO

and UNDO are discussed in Chapter 10.)

--Updating a value to itself still uses a lot of resources.

update launch set launch_date = launch_date;

Avoid UPDATE statements that reference the same table twice. We can rewrite those

UPDATE statements to make them faster and simpler.

For example, let’s pretend there is a mistake in our data set and fix the mistake

with an UPDATE statement. (Remember to always roll back the changes in this chapter.)

Launches and satellites have many names and identifiers and there’s a lot of overlap

between them. For example, one of the Pioneer missions has a LAUNCH.FLIGHT_ID2 set

to “Pioneer 5,” but the SATELLITE.OFFICIAL_NAME is set to “Pioneer V.” Just for the sake of

this example, let’s pretend the data is wrong and we need to fix the satellite data for deep

space missions. Our first instinct might be to write the following UPDATE statement:

--Update SATELLITE.OFFICIAL_NAME to LAUNCH.FLIGHT_ID2.

update satellite

set satellite.official_name =

(

 select launch.flight_id2

 from launch

 where launch.launch_id = satellite.launch_id

)

Chapter 8 Modify data with advanCed dML

194

where satellite.launch_id in

(

 select launch.launch_id

 from launch

 where launch.launch_category = 'deep space'

);

The preceding UPDATE statement has issues. The first part of the SQL statement

includes a correlated subquery, which increases the context and makes the SQL harder

to debug. The second subquery reads from the LAUNCH table again, but in a different way.

There are two ways to rewrite the preceding UPDATE statement. We can change the

UPDATE to use an updatable view, or we can change the UPDATE into a MERGE statement.

The MERGE statement is the better choice and both options are discussed in later sections.

 DELETE
Similar to UPDATE, DELETE statements also don’t have many unique advanced features. But

DELETE statements have issues with relationships, locking, and space. We need to be careful

when deleting, and not just because of the obvious problem of losing the wrong data.

When we delete from a table, we need to think about that table and all of its

relationships. If there’s a parent–child relationship, we can’t simply delete from the

parent table. Trying to delete a parent row that is referenced by a child row will usually

raise an exception like this:

SQL> delete from launch;

delete from launch

*

ERROR at line 1:

ORA-02292: integrity constraint (SPACE.LAUNCH_AGENCY_LAUNCH_FK) violated -

child record found

There are four ways to delete parent–child data: delete in a specific order, deferrable

constraints, cascading deletes, and triggers.

Deleting parent–child data in a specific order is usually the simplest and best way.

It’s normally easy to know which table comes first. If we’re lucky, the constraint name

in the error message gives us a good clue where to look. In the preceding example, the

constraint is LAUNCH_AGENCY_LAUNCH_FK, which refers to the LAUNCH_AGENCY table. Prior

Chapter 8 Modify data with advanCed dML

195

to Oracle version 12.2, when Oracle names were limited to 30 bytes, we couldn’t always

give our constraints obvious names; there wasn’t always enough space to list both the

tables involved. If we’re stuck using cryptic names, we can look up the constraint in

DBA_CONSTRAINTS.

Finding the correct deletion order for a deeply nested table structure can be

annoying. But that annoyance is a speed bump that may prevent bad deletions. If we

have a giant tree of tables, do we really want to make it easy for someone to delete from

all of the tables at once? If so, the safest solution is to find the correct order and put the

DELETE statements in a stored procedure. Using a stored procedure has the advantage of

ensuring everyone deletes data in the same order, thus preventing deadlocks.

Deferrable constraints let us temporarily violate the rules of our relational database.

With deferred constraints we can delete data in any order, as long as everything is correct

before the next COMMIT. But we shouldn’t blindly use deferred constraints all the time,

since deferred constraints can cause performance issues. Deferred constraints use

regular indexes, never unique indexes. Deferred constraints cause a temporary relaxing

of metadata rules. Those relaxed metadata rules can no longer be used by the Oracle

optimizer to pick better execution plans.

Cascading deletes let the system automatically delete child rows when the parent

row is changed. As previously discussed, we may not always want to make it easy to

delete large amounts of data. Personally, I always try to avoid dangerous side effects,

especially when deleting data. A fear of side effects is also why we should try to avoid

using triggers to solve our DELETE problems.

When our DELETE statements are successful on parent tables, we need to be careful to

avoid locking problems. Every time a parent row is deleted, Oracle checks child tables for

references to that value. If the foreign key columns in the child table do not have indexes,

those lookups will be slow. So slow that Oracle will lock the entire child table instead of

just locking the deleted rows. That escalated locking is why we want to create indexes

on all foreign key columns. On the other hand, there are many relationships where we

will never realistically delete parent rows, and those indexes aren’t needed. And the

lock escalation isn’t quite as bad as it might sound at first. Table locks are bad, but a

foreign key table lock only lasts for the duration of the statement, not the duration of the

transaction.

When we delete data, that data isn’t scrubbed from the file system. DELETE

statements generate a lot of REDO and UNDO, but the actual data files don’t initially

change much. The deleted rows in the data files are just marked as being available for

new rows and will get gradually over-written with new data.

Chapter 8 Modify data with advanCed dML

196

Keeping the space from deleted rows is usually a good thing. When we delete data

from a table, there’s a good chance new data will be inserted later. We don’t want to

release the space if we’re just going to request more space later. On the other hand,

there are times when we delete data and we’re never going to put more data back in the

table. In those cases, we want to reset the high-water mark and reclaim our space with

a TRUNCATE statement. TRUNCATE is not technically DML but it will be described in more

detail in a later section.

 MERGE
The MERGE command lets us update or insert rows, depending on whether the rows

already exist. Other databases name this command UPSERT, and occasionally Oracle will

also use that name. (For example, the command is named “UPSERT” in V$SQLCOMMAND.)

In addition to letting us combine inserts and updates, the MERGE command is also a

simpler and faster way to perform complex updates.

The MERGE syntax may look confusing at first. But a few extra keywords is better than

writing multiple INSERT and UPDATE statements and then checking for the existence of a

value. For example, the following code modifies the PLATFORM table with space elevator

data. The MERGE statement adds the row if it doesn’t exist or updates the row if it does

exist.

A space elevator would let us travel to space by climbing a large cable. One end

of the cable would be attached to Earth, and the other end would be attached to a

counterweight in space. Space elevators are common in science fiction books, but space

elevators won’t always be entirely science fiction. As I write this, Japan is days away from

launching a small space elevator test.

--Merge space elevator into PLATFORM.

merge into platform

using

(

 --New row:

 select

 'ELEVATOR1' platform_code,

 'Shizuoka Space Elevator' platform_name

 from dual

) elevator

Chapter 8 Modify data with advanCed dML

197

on (platform.platform_code = elevator.platform_code)

when not matched then

 insert(platform_code, platform_name)

 values(elevator.platform_code, elevator.platform_name)

when matched then update set

 platform_name = elevator.platform_name;

One minor syntax annoyance in the preceding code is the parentheses around the

ON condition. Joins don’t normally require parentheses but the MERGE statement does

require parentheses here.

If we ran the preceding code in SQL*Plus, we would see a feedback message like “1

row merged.” Unfortunately there is no way of telling whether that row was updated or

inserted.

The preceding MERGE statement has both an update and an insert section, but

we don’t always need to include both sections. Let’s use MERGE to rewrite the UPDATE

statement from the previous section. The following statement does the same thing –

updates SATELLITE.OFFICIAL_NAME to LAUNCHES.FLIGHT_ID2, for deep space launches.

--Update SATELLITE.OFFICIAL_NAME to LAUNCH.FLIGHT_ID2.

merge into satellite

using

(

 select launch_id, flight_id2

 from launch

 where launch_category = 'deep space'

) launches

 on (satellite.launch_id = launches.launch_id)

when matched then update set

 satellite.official_name = launches.flight_id2;

The preceding rewrite using MERGE is simpler and faster than the previous UPDATE

statement. The new statement only references the LAUNCH table one time. And the LAUNCH

table is used in an inline view, making it easier to debug the input rows. Additionally,

MERGE statements support more join methods than UPDATES. For example, a MERGE

statement can use a hash join but an UPDATE statement cannot.

Chapter 8 Modify data with advanCed dML

198

MERGE isn’t just for upserts. We should consider using MERGE for any complex UPDATE

statement that either references the same table multiple times or changes a large

number of rows.

 Updatable Views
Updatable views let us insert, update, and delete rows from a query, instead of working

directly on a table. The updatable view can be stored in a view object, or it can be a

subquery. The updatable view can contain joins with multiple tables, but only one table

can be modified at a time. There are several other important restrictions on updatable

views.

For example, let’s create yet another version of our SQL statement to set SATELLITE.

OFFICIAL_NAME to LAUNCH.FLIGHT_ID2.

--Update SATELLITE.OFFICIAL_NAME to LAUNCH.FLIGHT_ID2.

update

(

 select satellite.official_name, launch.flight_id2

 from satellite

 join launch

 on satellite.launch_id = launch.launch_id

 where launch_category = 'deep space'

)

set official_name = flight_id2;

Of the three versions of this statement, the preceding updatable view version is the

smallest. Despite the feature working well in this example, updatable views should be

avoided.

One of the main problems with updatable views is the large number of restrictions

on the queries they can contain. The query or view must not contain DISTINCT, GROUP

BY, certain expressions, etc. Queries using those features may raise the exception “ORA-

01732: data manipulation operation not legal on this view.” Luckily, we don’t have

to examine or experiment with each view to find out what we can modify. The data

dictionary view DBA_UPDATABLE_COLUMNS tells us what operations are possible for each

view column.

Chapter 8 Modify data with advanCed dML

199

The updatable view query must unambiguously return each row of the modified

table no more than one time. The query must be “key-preserved,” which means Oracle

must be able to use a primary key or unique constraint to ensure that each row is only

modified once. Otherwise the query will raise the exception “ORA-01779: cannot modify

a column which maps to a non key-preserved table.”

The UPDATE statement checks for possible ambiguities at compile time and raises

exceptions if the statement could theoretically be ambiguous. Updatable views can fail at

compile time even when they would work at run time.

The MERGE statement checks for possible ambiguities at run time and raises the

exception “ORA-30926: unable to get a stable set of rows in the source tables.” The MERGE

statement is more powerful but also lets a few statements run that shouldn’t work.

Demonstrating key-preserved tables is tricky and would require a lot of pages.2 It’s

best to avoid updatable views completely. But if we’re stuck on a system that only gives

us views, and no direct access to tables, updatable views are our only option. If we must

use a view, but the view can’t meet all the key-preserved requirements, we can use

INSTEAD OF triggers.

 DML Hints
Hints are instructions that tell Oracle how to process a SQL statement. Hints are mostly

used for performance and will be more thoroughly discussed in Chapter 18. This section

only focuses on hints for DML statements. DML hints can affect more than just the

execution plan of statements.

The first difficulty with hints is to understand that they’re not really “hints.” Hints

are not merely recommendations that the database can randomly choose to ignore.

Hints will be followed, if possible. When our hints are not followed, something has gone

wrong, but it can be difficult to figure out why the hint didn’t work.

Hints are formatted as comments with a plus sign. Hints can be single-line

comments like --+ APPEND or multiline comments like /*+ APPEND */. Hints must be

placed directly after the first keyword in the statement. For example, INSERT /*+ APPEND

/ is correct, but INSERT INTO /+ APPEND */ is incorrect. Incorrect hints silently fail

instead of raising errors.

2 If you’re interested in seeing an example of the problems key-preserved try to avoid, look at my
answer to this question: https://stackoverflow.com/questions/17092560/.

Chapter 8 Modify data with advanCed dML

https://stackoverflow.com/questions/17092560/

200

Hints are frequently abused. Some SQL developers will litter their statements with

hints, trying to force the perfect execution plan, instead of working with the optimizer.

Hints used for DML are generally considered “good” hints because they are telling the

optimizer something it couldn’t figure out for itself. However, some of these “good”

hints can affect recoverability and can be quite dangerous if they are misused. The most

important DML hints are IGNORE_ROW_ON_DUPKEY_INDEX, APPEND, and PARALLEL.

The hint IGNORE_ROW_ON_DUPKEY_INDEX is useful when we’re inserting data and want

to ignore duplicates. This hint is a semantic hint – the hint changes the logical behavior

of the SQL statement. For example, if we try to load duplicate data into a table, the

statement would generate an error like this:

SQL> insert into propellant values(-1, 'Ammonia');

insert into propellant values(-1, 'Ammonia')

*

ERROR at line 1:

ORA-00001: unique constraint (SPACE.PROPELLANT_UQ) violated

The typical workaround to the preceding error is to check for the existence of a row

before inserting it. But checking for rows requires extra code and extra run time. Instead,

we can add the hint IGNORE_ROW_ON_DUPKEY_INDEX and then the statement will simply

ignore the duplicate rows.

SQL> insert /*+ignore_row_on_dupkey_index(propellant,propellant_uq)*/

 2 into propellant values(-1, 'Ammonia');

0 rows created.

The APPEND hint enables a direct-path INSERT. Direct-path inserts are an important

topic and are discussed in Chapter 10 and elsewhere in this book. Here’s the short

version: direct-path INSERTs are good because they write directly to data files and are

faster; direct-path INSERTs are bad because they exclusively lock objects and are not

recoverable. That trade-off is what makes DML hints special – this is a decision the

optimizer cannot make by itself. There’s no painless hint for /*+ FAST=TRUE */. We must

think carefully before we use potentially dangerous DML hints. We should only use the

APPEND hint if we’re OK with extra locking and potentially losing data.

The PARALLEL hint is tricky and has performance implications that are discussed

in Chapter 18. The PARALLEL hint also has consequences for DML. The query part of a

statement can run in parallel without worrying too much about the consequences. But

Chapter 8 Modify data with advanCed dML

201

running the INSERT, UPDATE, or DELETE part of the statement in parallel uses direct-path

mode, and we’re back to the previously discussed trade-offs.

If we want both direct-path writes as well as parallel DML, then we should use both

the APPEND and PARALLEL hints, like this: /*+ APPEND PARALLEL(... */. Parallel DML

implicitly requests direct-path mode but we should still list both hints separately. If the

statement gets downgraded to serial, perhaps because all the parallel sessions are being

used, then the PARALLEL hint alone will not enable direct-path mode. Downgraded

statements are bad enough, we don’t also want to lose direct-path mode. (On the other

hand, there are times when we only want to parallelize the SELECT part of a statement,

not the DML part.)

Parallel DML is disabled by default. That default may feel annoying in a large data

warehouse, but that annoyance protects us from two important things: the lack of

recoverability from direct-path mode and the expensive overhead of parallelism for small

statements. Parallel processing sometimes happens automatically, but we never want direct-

path mode to happen automatically. To request parallel DML we must either use the new

12.1 hint /* ENABLE_PARALLEL_DML */ or run this statement in our session before any DML:

alter session enable parallel dml;

 Error Logging
DML error logging lets us ignore errors and continue processing. The errors, along with

the data causing those errors, are saved in an error logging table. Error logging is useful

when we don’t want a few bad values to stop the entire process.

For example, let’s try to load new rows into the LAUNCH table, but use a value that is

too large. By default, our query generates an error and stops processing:

SQL> --Insert into LAUNCH and generate error.

SQL> insert into launch(launch_id, launch_tag)

 2 values (-1, 'A value too large for this column');

values (-1, 'A value too large for this column')

 *

ERROR at line 2:

ORA-12899: value too large for column "SPACE"."LAUNCH"."LAUNCH_TAG"

(actual:33, maximum: 15)

Chapter 8 Modify data with advanCed dML

202

Before we can use error logging, we must generate an error logging table. Oracle

provides a PL/SQL package to create a table with the right format. This statement is all it

takes to generate the error logging table:

--Create error logging table.

begin

 dbms_errlog.create_error_log(dml_table_name => 'LAUNCH');

end;

/

The default table name is set to ERR$_ plus the table name passed in to the

procedure. The error logging table created by the preceding statement will be named

ERR$_LAUNCH. The error logging clause works with INSERT, UPDATE, DELETE, and MERGE. To

use the error logging table, we must add the error logging clause to our statements. We

want to include at least two different sections of the error logging clause – which table to

use and the reject limit.

The default reject limit is 0, which means the statement will log the error but

immediately stop processing. A more common value is UNLIMITED. The following

example shows the same bad INSERT statement as before, but this time the statement

completes and logs the error.

SQL> --Insert into LAUNCH and log errors.

SQL> insert into launch(launch_id, launch_tag)

 2 values (-1, 'A value too large for this column')

 3 log errors into err$_launch

 4 reject limit unlimited;

0 rows created.

The preceding INSERT didn’t raise an error but the SQL*Plus feedback message

shows “0 rows created.” That statement created a row in the ERR$_LAUNCH table, and that

row will still be there even if the session is rolled back.

The ERR$_LAUNCH table contains several ORA_ERR_* columns with metadata, as well

as all the LAUNCH table columns for the failed row. There is a lot of data in that error

logging table, and the following query only returns the most useful columns.

--Error logging table.

select ora_err_number$, ora_err_mesg$, launch_tag

from err$_launch;

Chapter 8 Modify data with advanCed dML

203

ORA_ERR_NUMBER$ ORA_ERR_MESG$ LAUNCH_TAG

--------------- ------------------------------- ----------

 12899 "ORA-12899: value too large..." A value...

The preceding results are perfect for debugging because they also show the values

we tried to use. Default SQL exceptions don’t include the actual values that caused the

errors.

Error logging is a useful feature when we have a job that absolutely must finish,

regardless of errors. On the other hand, we don’t want to over-use error logging to sweep

all our bugs under the rug. Most problems are best handled the moment they happen,

not later.

 Returning
The returning clause lets us save columns from rows changed by DML statements.

We don’t always know the values that we changed or created, such as when we use a

sequence. We may want to save those values for later processing.

The returning clause works best in a PL/SQL context, and PL/SQL is out of the

scope of this book. But a little PL/SQL is necessary when discussing advanced SQL. The

following anonymous block inserts a row into the LAUNCH table, returns the new LAUNCH_

ID, and then displays the new value.

--Insert a new row and display the new ID for the row.

declare

 v_launch_id number;

begin

 insert into launch(launch_id, launch_category)

 values(-1234, 'deep space')

 returning launch_id into v_launch_id;

 dbms_output.put_line('New Launch ID: '||v_launch_id);

 rollback;

end;

/

Chapter 8 Modify data with advanCed dML

204

The DBMS output from the preceding statement should be: “New Launch ID: -1234.”

A more realistic example would use something like SEQUENCE_NAME.NEXTVAL instead of a

hard-coded number.

The returning clause works with INSERT, UPDATE, and DELETE, but does not work with

MERGE. The returning clause can return multiple columns into multiple variables and

can also return multiple sets of values into collection variables. The collection variable

example is only shown in the repository, since the example requires complex PL/SQL.

 TRUNCATE
The TRUNCATE command is the fastest way to remove all the rows from a table. The

command is officially Data Definition Language (DDL), instead of Data Manipulation

Language (DML). In practice, TRUNCATE is used more like DML. The statement has

many advantages compared to deleting all the rows from a table, but TRUNCATE also has

significant disadvantages. Understanding the trade-offs requires understanding Oracle

architecture, which is described in more detail in Chapter 10.

Deleting all the rows from a table is an expensive operation. When deleting a row,

Oracle must first store the information in the REDO log (a write-ahead log, in case the

database crashes and needs to be recovered), then in the UNDO tablespace (in case

the command is rolled back and all the changes need to be undone), and then the

actual rows are changed. Deleting rows is much slower than inserting rows, whereas

the TRUNCATE command runs almost instantly. Instead of changing individual rows,

truncating the table simply removes the entire storage area for the table (the segment).

A TRUNCATE command can finish in less than a second, regardless of the table size.

Another advantage of truncating instead of deleting is that truncating the table

also releases the storage immediately. That space can then be used for other objects.

A DELETE removes the rows, but the space used by those rows will only be available for

the same table.

The main problem with TRUNCATE is that it automatically commits, even if the

command fails, and there’s no undoing it. A TRUNCATE cannot be rolled back and we

cannot use a flashback command on the table to view old data. TRUNCATE also requires

an exclusive lock on a table, so we can’t TRUNCATE a table if anyone else is modifying it.

(Although if we’re trying to TRUNCATE a table that someone else is modifying, something

has gone horribly wrong.)

Chapter 8 Modify data with advanCed dML

205

The following test cases demonstrate a few properties of TRUNCATE. The test cases are

also good examples of how to investigate Oracle’s storage properties. These are the kind

of tests all SQL developers must learn to create. These test cases let us prove how Oracle

works, instead of merely guessing.

First we need to create a table, load it, and measure it.

--Create a table and insert rows.

create table truncate_test(a varchar2(4000));

insert into truncate_test

select lpad('A', 4000, 'A') from dual

connect by level <= 10000;

--Segment size and object IDs.

select megabytes, object_id, data_object_id

from

(

 select bytes/1024/1024 megabytes

 from dba_segments

 where segment_name = 'TRUNCATE_TEST'

) segments

cross join

(

 select object_id, data_object_id

 from dba_objects

 where object_name = 'TRUNCATE_TEST'

) objects;

MEGABYTES OBJECT_ID DATA_OBJECT_ID

--------- --------- --------------

 80 196832 196832

The results show the table uses 80 megabytes of space and has the same OBJECT_ID

and DATA_OBJECT_ID. On your system the size may be slightly different, because Oracle’s

segment space allocation varies depending on your settings and version. Your values

for OBJECT_ID and DATA_OBJECT_ID will be different than mine, but notice that your two

values are identical.

Chapter 8 Modify data with advanCed dML

206

Let’s TRUNCATE the table and check the segments and objects again. Notice that

the TRUNCATE command is commented out. You’ll have to either remove the comment

or highlight and run the command. This example is intentionally inconvenient – the

TRUNCATE command is dangerous and we want to ensure that nobody runs it by accident.

Inevitably, someone will load our worksheets or notebooks and run all the commands

like it’s a script. This example table isn’t important, but we want to get into the habit of

commenting out potentially dangerous commands.

--Truncate the table.

--truncate table truncate_test;

--(Re-run the above segments and objects query)

MEGABYTES OBJECT_ID DATA_OBJECT_ID

--------- --------- --------------

 0.0625 196832 196833

The preceding results show the segment space has decreased to almost zero. The

OBJECT_ID stayed the same, but the DATA_OBJECT_ID has slightly changed. The new

DATA_OBJECT_ID is Oracle’s ways of saying the table may look the same, but the data has

completely changed in an unusual way. The sudden change to our segment can affect

other operations and cause strange errors.

You may have heard the Oracle mantra “readers don’t block writers, and writers

don’t block readers.” That phrase refers to the consistency model of the Oracle database.

If we start reading from a table, someone else can change the table at the same time.

None of the users get blocked, and both users get a consistent view of the table as of the

time their statements began.

Those rules about readers and writers don’t apply to TRUNCATE. TRUNCATE doesn’t

write to the table, TRUNCATE destroys and recreates the table. If someone else was reading

from a table while the table was truncated, their read operation may fail. When the

client asks Oracle for the next N rows, Oracle won’t be able to find any rows. The rows

obviously aren’t in the table, but the rows won’t even be in the UNDO tablespace either,

so Oracle doesn’t know where the data went. The DATA_OBJECT_ID has changed, the

client is trying to read from an old table, and the SELECT statement will generate the

error “ORA-08103: object no longer exists.” That error message is a bad omen, implying

someone is destroying our tables at the wrong time.

Chapter 8 Modify data with advanCed dML

207

 COMMIT, ROLLBACK, and SAVEPOINT
COMMIT, ROLLBACK, and SAVEPOINT are transaction control commands and are important

for controlling our DML statements. This book assumes you are familiar with the basics

of COMMIT (making the changes permanent), ROLLBACK (undoing the changes), and

SAVEPOINT (creating places we can later roll back to). For advanced SQL development,

we need to know more about transactions, what causes transaction control statements,

what happens when transaction control statements are executed, and when to use

transaction control statements.

Transactions are logical, atomic pieces of work. It’s up to us to decide what a

transaction should be. When a user clicks a button, what changes should either

completely happen or not happen at all? Many developers get transactions backward –

they try to find out what the database can support and then size their transactions

accordingly. Instead, we should find our maximum transaction and then size our

database accordingly. If our transactions run into resource problems, and don’t have any

obvious bugs or missing optimizations, we should resize or reconfigure our database.

Oracle transactions start automatically. We don’t need to worry about starting

transactions, but we do need to worry about ending transactions. Most transactions

should be ended explicitly with either a COMMIT or a ROLLBACK. Transactions are

automatically committed if we run any DDL statement, even if that DDL statement fails.

Unlike other databases, Oracle DDL statements cannot be part of a transaction and

cannot be rolled back.

Exiting a session also automatically ends a transaction. A normal exit typically issues

a COMMIT, and an abnormal exit typically issues a ROLLBACK. But that behavior may be

configurable. We should check our IDE and clients before we make assumptions about

how our transactions will end. Or better yet, we should always specify exactly how our

transactions end, by running either COMMIT or ROLLBACK.

When a COMMIT is executed, not much happens right away. A simple database change

requires a lot of work to meet the ACID properties – atomic, consistent, isolated, and

durable. Oracle is designed to do as little of that work as possible before the COMMIT.

The COMMIT command almost always executes immediately, but that speedy execution

doesn’t mean COMMIT is free. A lot of work happens asynchronously. Creating lots of

tiny transactions creates more overhead and makes it harder for Oracle to optimize the

background work. We should avoid splitting large changes into multiple statements and

transactions.

Chapter 8 Modify data with advanCed dML

208

When a ROLLBACK is executed, a lot of work may be required. Unless the operation

was an insert or direct-path write, the time to run the ROLLBACK command will be about

as long as the time to run the statement. ROLLBACK automatically runs when a statement

fails, or the session is killed. When a statement fails, only that statement is rolled back.

When a session is killed, the entire transaction is rolled back.

We don’t always have a choice about whether to ROLLBACK a transaction. If the

statement or data is bad, we have to undo it. But there are scenarios where we do have a

choice. When a statement has been running for too long, sometimes we need to let that

statement continue to run until it finishes. Other times, that statement will not finish

soon enough. If we can’t wait for that statement to finish, we must kill the session, let the

transaction ROLLBACK, and run the original statements in a different way. The decision

hinges on how long the statement will take to complete versus how long the ROLLBACK

will take.

Estimating statement run time is difficult or impossible, as described in Chapter 16.

Luckily, we can easily estimate the ROLLBACK time – it should take as long as the original

DML. Rolling back large SQL statements is a bit scary, and it helps to track the progress.

The simplest way to measure ROLLBACK progress is with V$TRANSACTION.USED_UREC. The

column USED_UREC is the number of used UNDO records. That value is normally equal to

the number of table rows, in addition to index changes. For example, let’s make a small

change and measure the activity.

--Insert temporary data to measure transactions.

insert into launch(launch_id, launch_tag) values (-999, 'test');

select used_urec from v$transaction;

USED_UREC

 3

The single INSERT statement generated three UNDO records. The number is a bit

tricky to understand. The number represents one row change and two index changes.

The table LAUNCH has five indexes, but only two of the indexes are used, because nulls are

not stored in indexes. Now let’s ROLLBACK the change and watch the numbers decrease.

Chapter 8 Modify data with advanCed dML

209

--Now get rid of the data.

rollback;

select used_urec from v$transaction;

USED_UREC

After the ROLLBACK, the transaction entry is gone and the row disappears. For

a longer statement, we should wait a minute, re-run, and find the difference. That

difference gives us UNDO rows per minute, which we can use to estimate when the

ROLLBACK will complete. This whole ROLLBACK-estimate process may not be important in

an OLTP environment, where all changes are small. In a data warehouse environment,

where we have to explain to management why a critical job must wait another day, this

estimate can prevent a lot of panic.

We all understand that our changes can’t be seen by other sessions until we run a

COMMIT. But forgetting a COMMIT is still a common bug that happens to the best of us.

Whenever we’re building a test case, or reporting a bug, we must make it obvious that the

code was committed. Someone will eventually ask the question, we might as well answer

it ahead of time.

COMMIT has a few options with risky trade-offs. The option NOWAIT means that the

change doesn’t have to be fully written to disk before the COMMIT returns. The option

BATCH will group several COMMIT commands together and write them all at once. Both

options improve performance, but at the cost of durability. A normal COMMIT doesn’t

return control until everything necessary for recovery is written to a hard drive. If we ask

for different COMMIT options, we could potentially lose our data. Since COMMIT is so fast

anyway, if we’re looking at those two options, we should step back and ask ourselves why

we’re committing so frequently.

 ALTER SYSTEM
The ALTER SYSTEM command is not a DML command, but there are times when it’s

necessary for SQL development. As described in Chapter 2, we should do most of our

work in an environment where we have full control over everything. Even when we have

full control, we don’t want to run ALTER SYSTEM commands frequently. But there are a

few specific commands that SQL developers may find handy. And there are easy ways to

grant access to those commands without granting elevated privileges.

Chapter 8 Modify data with advanCed dML

210

For performance testing it may help to clear database memory structures.

Sometimes we want to force Oracle to generate a new execution plan, using this

command: ALTER SYSTEM FLUSH SHARED_POOL. Sometimes we want to clear the cache,

to test the system running cold, using this command: ALTER SYSTEM FLUSH BUFFER_

CACHE. Sometimes we need to kill runaway sessions, using a command like this: ALTER

SYSTEM KILL SESSION '...' IMMEDIATE.

The commands in the previous paragraph require the powerful privilege ALTER

SYSTEM. Even if we have that privilege in our primary development environments, it’s

likely we don’t have that privilege in higher environments. But we can always use PL/

SQL to grant a highly targeted privilege. We can create a definer’s rights procedure that

allows only the specific commands we need. There is no system privilege specific to

ALTER SYSTEM FLUSH SHARED_POOL, but the following statements will allow a user or role

to run only that specific command:

--Let users run a few specific ALTER SYSTEM commands.

create procedure sys.flush_shared_pool is

begin

 execute immediate 'alter system flush shared_pool';

end;

/

grant execute on sys.flush_shared_pool to DEVELOPER_USERNAME;

There are a few things about the preceding code that may concern a database

administrator. The Oracle manual says to not store objects in system schemas and to be

careful about flushing the shared pool. But those concerns shouldn’t prevent us from

creating this procedure. We don’t want to store data in the system schema (because the

SYSTEM tablespace is special and not meant for large amounts of data), and we don’t

want to store all our code in SYS, because of security concerns. But there are times when

we have to create objects in SYS anyway, like password verification functions. Creating

a precisely targeted procedure in SYS can help us limit our privileges and automate

common tasks. And in practice, flushing the caches rarely has a huge impact.

The important lesson here is that even ALTER SYSTEM commands should be available

for everyone. We just have to be careful, depending on which environment we’re in and

which specific commands we’re granting.

Chapter 8 Modify data with advanCed dML

211

Organizations with shared development databases that can’t give SQL developers

the ability to run ALTER SYSTEM commands end up with a parameter mess. Parameters

only get changed when absolutely necessary, but over the years those custom values

outlive their usefulness. Eventually nobody knows why we set all those cryptic values,

and nobody is empowered to test changing the parameters. We have to be careful about

changing parameters, but it’s important to have everyone invested in our database

configuration.

 ALTER SESSION
The ALTER SESSION command is also not a DML statement but it supports our DML

statements.

As discussed in Chapter 3, there are hundreds of instance parameters listed in

V$PARAMETER and explained in the Database Reference. Most of those parameters can also

be set at the session level. When possible, we should set parameters at the session level

instead of the instance level. If there’s unusual behavior in our application that requires a

configuration change, that change should only apply to our application. We don’t want to

modify other programs that also happen to be running on the same database.

For example, let’s say someone set the parameter OPTIMIZER_INDEX_COST_ADJ. The

parameter was changed years ago, nobody knows why, but everyone is scared to touch

the parameter now. Using a non-default value for that parameter is almost certainly a

bad idea, but once the parameter is set, how do we prove it’s not necessary? We can start

by changing the parameter just for one session at a time and slowly testing the change

with other users.

--Change OPTIMIZER_INDEX_COST_ADJ at the session level.

alter session set optimizer_index_cost_adj = 100;

If we only want to change a parameter for one user, we can put an ALTER SESSION

statement in a logon trigger. Eventually, we can change the system parameters back to

their default values and use the optimizer the way it was designed.

Other common session parameters are National Language Support parameters.

NLS parameters are over-used, even at the session level. Setting parameters like NLS_

DATE_FORMAT at the session level is like using a global variable. Our code shouldn’t do

that much format conversion in the first place, although for some tasks it’s unavoidable.

Chapter 8 Modify data with advanCed dML

212

Setting CURRENT_SCHEMA is helpful when we are constantly querying another schema

and don’t want to repeatedly type the schema name. Setting ENABLE|DISABLE PARALLEL

DML|DDL|QUERY helps set parallelism. Setting RESUMABLE can make our session either

wait or immediately fail if the database runs out of space. Sometimes we want to wait for

the DBA to add space, and sometimes we want to throw an error immediately. Several

PLSQL_* parameters can help us control program compilation.

The following are four quick examples of the previously mentioned ALTER SESSION

commands.

--Use the SPACE schema by default.

alter session set current_schema=space;

--Allow parallel DML.

alter session enable parallel dml;

--Wait for adding space.

alter session enable resumable;

--Enable debugging in newly compiled programs.

alter session set plsql_optimize_level = 1;

 Input and Output
As much as we might like to do all our work inside one database, there are many times

when we need to transfer data between multiple systems. Oracle has several convenient

and powerful ways to exchange data between Oracle databases. To exchange data

between Oracle and non-Oracle systems, there are many powerful extract–transform–

load (ETL) tools like Informatica. And there are also powerful extract–load–transform

(ELT) tools like Oracle Data Integrator. ETL and ELT tools are not always available and

are a separate topic not covered by this book. There are many ways to input and output

text files from Oracle, each with different pros and cons.

The simplest, fastest, and most accurate way to transfer data between Oracle

databases is with Oracle utilities. The following is a list of different Oracle utilities for

transferring data, including their strengths and weaknesses.

Chapter 8 Modify data with advanCed dML

213

 1. Import/export data pump (impdp, expdp): The only transfer

process that supports all data types and features. Data pump is fast,

has a command line and a PL/SQL version, and can be used for

creating and reading external tables. The only downside is that data

pump only works on the server, so we need operating system access.3

 2. Original import/export (imp, exp): An older, less capable

version of data pump that runs directly on the client. Only use

these deprecated programs when we need to access an ancient

version of Oracle or don’t have server access.

 3. Database links: Great for small and fast querying. Links don’t support

all data types and are very slow for moving large amounts of data.

 4. SQL*Plus COPY: Deprecated program that is only useful for small,

simple transfers, where the source and destination can’t directly

communicate.

 5. Transportable tablespaces: The fastest way to transfer data, but it

copies an entire tablespace and has restrictions.

The preceding items only work when Oracle is both the source and the destination.

When we’re transferring data between Oracle and a non-Oracle system, that data will

often be transferred through text files. Even though Oracle has many ways to read and

generate text files, dealing with text files is still a challenge. Text file input and output in

Oracle is not as convenient as it is in most databases, which means we need to be aware

of many alternatives. The best solution depends on the context. The following list shows

different ways of moving text into and out of Oracle.

 1. UTL_FILE: This package gives us complete control over how

every byte is read and written. The downside is that we have to

code the file format ourselves, and the file must be on the server.

Conforming to even a simple file format like CSV is harder than

most developers appreciate. When possible, we should look for

pre-built packages on top of UTL_FILE.4

3 We may be able to work around server access limitations with the open source program Oracle
Copy (OCP): https://github.com/maxsatula/ocp.

4 The popular DATA_DUMP.SQL is useful for quickly outputting data to a CSV file. There are many
versions of this utility, including one I have worked on: https://github.com/jonheller1/data_dump.

Chapter 8 Modify data with advanCed dML

https://github.com/maxsatula/ocp
https://github.com/jonheller1/data_dump

214

 2. SQL*Loader: Fast tool that comes with Oracle by default, can

work on the client or the server, and has many configuration

options for things like delimiters and fixed width formats. The

configuration files and syntax are complicated. SQL*Loader is

only useful for reading files.

 3. External tables: A table whose data is based on a flat file. External

tables are the fastest way to access files, but are read-only, and

require server access.

 4. DBMS_XSLPROCESSOR: Convenient functions READ2CLOB and

CLOB2FILE for CLOB I/O.

 5. SQL*Plus scripts: Reading from SQL*Plus scripts to load data is

convenient, if we’re able to get files in that format. Writing from

SQL*Plus scripts is useful for simple file formats but requires

custom code for things like escaping quotation marks in CSV files.

 6. Oracle SQL Developer, SQL CL, or other third-party tools:

Most IDEs have options for exporting table data to different

formats, such as CSV or INSERT statements. These tools also have

options for either importing data from files or helping configure

SQL*Loader.

 Useful PL/SQL Packages
Advanced SQL development inevitably requires PL/SQL. PL/SQL is Oracle’s procedural

extension for SQL, is available wherever Oracle SQL is available, and integrates

seamlessly and optimally with SQL. If we’re building a program that primarily runs

SQL statements, then PL/SQL should be our first choice. This section discusses PL/SQL

packages that help us write better SQL.

First we need to discuss how to run PL/SQL packages, without going into a full

PL/SQL tutorial. Most packages contain functions that we can simply call from a SQL

statement. For other PL/SQL functionality, we can either create procedural objects

or use anonymous blocks. Procedural objects are things like packages, procedures,

functions, types, etc. But we may not have the privileges to create and run PL/SQL

objects, and we may not want to deal with managing more schema objects. Anonymous

blocks are perfect for ad hoc tasks.

Chapter 8 Modify data with advanCed dML

215

Anonymous blocks are groups of statements that are run together. The block isn’t

stored anywhere, doesn’t require an extra compilation step, and doesn’t require extra

privileges. Blocks contain an optional DECLARE section, a BODY with BEGIN and one

or more statements, and an END. We can nest blocks, create functions, procedures,

and other objects inside the blocks, etc. We could build our entire program in one

anonymous block but that would be a bad idea.

Let’s start with the most boring possible anonymous block. Not all the syntax is

optional; there has to be at least one statement, so this is the smallest PL/SQL block we

can write:

--The most boring anonymous block.

begin

 null;

end;

/

Let’s make a more useful anonymous block by outputting data:

--Anonymous block that does something.

declare

 v_number number := 1;

begin

 dbms_output.put_line('Output: ' || to_char(v_number + 1));

end;

/

Output: 2

If you don’t see the preceding results, you may need to configure your IDE to display

DBMS output. Some IDEs, like PL/SQL Developer, automatically detect and display

DBMS output. Some IDEs, like Oracle SQL Developer, require us to enable DBMS output

before we run the example. In SQL*Plus, we would run this command to enable the

output: SET SERVEROUTPUT ON.

SQL*Plus has an EXEC command to run PL/SQL statements. The EXEC command

takes the input statement and wraps it inside a BEGIN and an END. We should almost

always use a regular PL/SQL block instead of the EXEC command. A PL/SQL block works

in every IDE, but EXEC only works in some IDEs. As described in Chapter 5, we should

avoid doing PL/SQL development in SQL*Plus. (But there are always exceptions.)

Chapter 8 Modify data with advanCed dML

216

SQL> set serveroutput on

SQL> exec dbms_output.put_line('test');

test

PL/SQL procedure successfully completed.

We’ve already seen DBMS_OUTPUT a few times in this book. The package has multiple

functions for sending strings to the output buffer. That output may be displayed on the

screen, captured by DBMS_OUTPUT.GET_LINES, displayed as the output for our scheduler

jobs, etc.

DBMS_RANDOM generates pseudorandom text and numbers. This package is useful for

generating or selecting random test data.

--Not-so-randomly generate a number, since the seed is static.

begin

 dbms_random.seed(1234);

 dbms_output.put_line(dbms_random.value);

end;

/

.42789904690591504247349673921052414639

DBMS_STATS is a vital package for performance tuning. Optimizer statistics are

essential for good performance, and there are an enormous number of options for

gathering statistics. Luckily, 99% of the time the default settings are perfect, and the

package is easy to use. (You may need to adjust the first parameter in the following

examples, depending on the schema used to install the data set.)

--Gather stats for a table.

begin

 dbms_stats.gather_table_stats('SPACE', 'LAUNCH');

end;

/

--Gather stats for a schema.

begin

 dbms_stats.gather_schema_stats('SPACE');

end;

/

Chapter 8 Modify data with advanCed dML

217

DBMS_SCHEDULER lets us create and manage jobs. DBMS_SCHEDULER is another vital

package and has many powerful and complex scheduling features. We can create a

set of jobs to manage complicated systems, build our own parallelism, or just kick off

something and have the code run in the background. The following code creates and

runs the simplest possible job and then checks the job’s status.

--Create and run a job that does nothing.

begin

 dbms_scheduler.create_job(

 job_name => 'test_job',

 job_type => 'plsql_block',

 job_action => 'begin null; end;',

 enabled => true

);

end;

/

--Job details.

--(The first two rows may be empty because one-time jobs

-- automatically drop themselves when they finish.)

select * from dba_scheduler_jobs where job_name = 'TEST_JOB';

select * from dba_scheduler_running_jobs where job_name = 'TEST_JOB';

select * from dba_scheduler_job_run_details where job_name = 'TEST_JOB';

DBMS_METADATA and DBMS_METADATA_DIFF were briefly described in Chapter 2 but

are worth repeating. Those packages have lots of options for retrieving, formatting, and

comparing code. Hopefully we have all our code in version control and don’t need to rely

on those packages too often.

 Summary
This chapter shows there’s much more to changing data than a simple INSERT, UPDATE,

or DELETE. These three commands have interesting options and pitfalls, and there’s also

the powerful MERGE statement. DML statements can use updatable views, but we should

avoid that feature. Hints can significantly change our DML behavior, but we must use

them with caution. DML can log errors and return data from affected rows. There are

Chapter 8 Modify data with advanCed dML

218

many other commands that are not DML but can help us change our data: TRUNCATE to

quickly remove table data, COMMIT and ROLLBACK to end transactions, and ALTER SYSTEM

and ALTER SESSION to control the environment. Oracle has many ways to get data into

and out of the system, and it’s worth learning each one’s pros and cons. Finally, this

chapter introduced useful PL/SQL packages and how to use them in anonymous blocks.

We’ve seen how to read and write data with advanced SQL. The next chapter

discusses how to create the objects to hold that data.

Chapter 8 Modify data with advanCed dML

219
© Jon Heller 2019
J. Heller, Pro Oracle SQL Development, https://doi.org/10.1007/978-1-4842-4517-0_9

CHAPTER 9

Improve the Database
with Advanced Oracle
Schema Objects
So far this book has used pre-built objects but now it’s time to start making our own.

This book assumes you are familiar with basic Data Definition Language commands like

CREATE TABLE. This chapter describes advanced features of Oracle schema objects and

the advanced DDL commands to create and maintain them.

This chapter does not create an exhaustive list of features and expect you to

memorize the syntax. Instead, the goal is to introduce a wide variety of features.

Exposure to these new features and commands will give you ideas for your current and

future projects. When the time comes to implement these new features, look them up in

the SQL Language Reference for more details.

There’s a chance that running the commands in this chapter will break things in our

schemas. But none of these commands will break things in other schemas. If we followed

the advice in Part 1 about setting up efficient database development processes, breaking

things in our own schema shouldn’t be an issue. In fact, if we’re not breaking things,

we’re not trying hard enough.

 ALTER
The ALTER commands let us change our database to match our ever-changing

requirements. This section does not discuss specific ALTER commands, such as the

syntax to add columns to tables or to recompile objects. And this section does not

include the ALTER SESSION or ALTER SYSTEM commands, which are not DDL but are

“session control” and “system control,” respectively. Instead, this section only discusses

220

two ALTER anti-patterns: using ALTER to modify code and not using ALTER to modify

persistent objects.

Oracle has 46 different ALTER commands. Developers who are scared of tearing

things down and rebuilding from scratch may read too much into the power of those

ALTER commands. Many SQL developers have asked a variant of this question: how can

we use ALTER to add a new function to a package?

The short answer to the preceding question is that we cannot really ALTER procedural

code objects.1 The ALTER PACKAGE command is only for recompiling, the command does

not give us the ability to add one function at a time.

The longer answer to the preceding question is – what is wrong with our process that

would make us ask such a question? Creating objects is hard, but maintaining a list of

changes is even harder. As described in Chapter 2, we should build an installation script

for all procedural objects, like packages, functions, and procedures. We should run that

same script for every deployment.

Recompiling everything, every time, may not work well in some environments, but

it works great in Oracle. Having only one way to create code objects keeps our scripts

simple and organized. If we’re working with version-controlled files, when we add a

function to the package, we save the function inside the whole package anyway. It would

be more work to create a separate ALTER PACKAGE ... ADD FUNCTION command, if such

a thing were even possible.

On the other hand, our processes suffer when we’re scared of altering persistent

objects, such as tables. The ALTER TABLE command lets us change almost anything

about a table. We do have to be careful when altering tables, more so than when we are

simply changing data. Since DDL auto-commits, it is possible to lose data if something

goes horribly wrong. But if we have a fully automated development and testing process,

we shouldn’t fear DDL.

Fear of altering tables is the primary cause of the entity–attribute–value (EAV)

pattern. EAV is when our tables have only a few simple columns, such as NAME and

VALUE. EAV is discussed as an anti-pattern in Chapter 15, but it is not inherently evil.

Organizations that are too scared of altering tables will store everything in an EAV,

making their systems painful to use.

1 There are ALTER commands that affect object-relational code. But those exceptions are a
reason why we should avoid object-relational technology. It’s a nightmare when altering code
permanently breaks our data.

Chapter 9 Improve the Database wIth aDvanCeD oraCle sChema objeCts

221

My simple rule is: always recreate code from scratch, always try to alter

persistent objects.

 Tables
Tables are the central objects in a relational database, so it’s not surprising that Oracle

has literally hundreds of options for creating tables. Tables come in different types and

have many options. The columns within a table also have different types and options.

Some important table features, such as constraints and partitioning, are discussed

separately in a later section.

 Table Types
Oracle tables are the primary interface to the relational model and they all look the same

in a SQL statement. Under the covers, Oracle can implement tables in many different

ways: heap, global temporary, private temporary, sharded, object-relational, external,

and index-organized.

Heap tables are the default table type. The word “heap” means the table is an

unorganized pile of stuff. The following CREATE TABLE and data dictionary queries show

how even the simplest table contains a huge number of options. The results are too large

to show here, you’ll have to run the following queries to explore the results.

--Create a simple table and see its metadata.

create table simple_table2(a number, b varchar2(100), c date);

select dbms_metadata.get_ddl(

 object_type => 'TABLE',

 name => 'SIMPLE_TABLE2',

 schema => sys_context('userenv', 'current_schema')

) from dual;

select *

from all_tables

where table_name = 'SIMPLE_TABLE2'

 and owner = sys_context('userenv', 'current_schema');

Chapter 9 Improve the Database wIth aDvanCeD oraCle sChema objeCts

222

select *

from all_tab_columns

where table_name = 'SIMPLE_TABLE2'

 and owner = sys_context('userenv', 'current_schema');

Global temporary tables store temporary values that only the current session can

see. The data can be preserved either until the next commit, with the option ON COMMIT

DELETE ROWS, or until the end of the session, with the option ON COMMIT PRESERVE

ROWS. The following example creates a global temporary table and shows how the value

disappears after a commit.

--Global temporary table that holds data until next commit.

create global temporary table temp_table(a number)

on commit delete rows;

--Insert data and it shows up ONLY in your session.

insert into temp_table values(1);

select count(*) from temp_table;

COUNT(*)

 1

--But once you commit, the data is gone.

commit;

select count(*) from temp_table;

COUNT(*)

 0

Global temporary tables tend to be misused in several ways. First, Oracle’s global

temporary tables are global; the definition is viewable by other sessions but the data

is not. The table definition is permanent, and the table doesn’t need to be constantly

dropped and recreated. Second, Oracle’s global temporary tables are not memory

structures. Writing to global temporary tables writes to disk, just like a heap table.

Global temporary tables are useful for holding temporary results of programs, but global

temporary tables are not meant for frequent ad hoc creation. Unlike SQL Server, Oracle’s

global temporary tables are not primarily intended to boost performance. They may

Chapter 9 Improve the Database wIth aDvanCeD oraCle sChema objeCts

223

improve performance in some cases, but we should not blindly add global temporary

tables and expect an improvement.

The biggest problem with global temporary tables is when they are used as a poor

replacement for inline views. Complex queries are best built with multiple inline views,

which simplify the program and let Oracle decide when to read and write data. Global

temporary tables are only useful when the results will be read multiple times in different

queries, or when doing everything in one query is infeasible. Chapter 12 discusses how

to create large SQL statements, and in practice there are only a few queries that need to

be broken up with global temporary tables.

Private temporary tables were introduced in 18c. They are similar to global

temporary tables, except they are stored in memory, and both the definition and the data

are private to the session. Similar to global temporary tables, private temporary tables

are not a panacea for improving SQL. The following example creates a private temporary

table, which can then be used like any other table, but only in the same session. Note

that private temporary tables must have a specific prefix, which is ORA$PTT by default.

--Create a private temporary table.

create private temporary table ora$ptt_private_table(a number)

on commit drop definition;

The worst part about private temporary tables is the confusion over the name. Prior

to 18c there was only one kind of temporary table. References to “temporary tables” are

almost certainly referring to “global temporary tables.”

Sharded tables are tables where the rows are distributed among multiple

shared- nothing databases. Sharding was introduced in 12.2 and is too complex for

an example in this book. In my experience, a single database can solve most of our

problems. When we try to replicate and shard, we often end up creating more problems

than we’re solving. The technologies needed to build Facebook or Google do not

necessarily apply to our internal applications.

Object-relational tables let us create tables based on user-defined types. Storing

complex objects in a column doesn’t extend the relational model, it breaks the relational

model. The disadvantages of breaking the relational model, such as ruining SQL, almost

certainly outweigh the advantages, such as simplifying a few specific use cases. There

are exceptions, such as JSON and XML, but those exceptions were carefully designed.

Object-relational anti-patterns will be discussed in more detail in Chapter 15.

Chapter 9 Improve the Database wIth aDvanCeD oraCle sChema objeCts

224

External tables are read-only tables whose data comes from flat files or data pump

files managed by the operating system. To create an external table, we define the Oracle

directory (which maps to an operating system directory), a file name, and a list of

columns similar to a SQL*Loader format. Then we can read from a text file just like a

regular table.

External tables are mostly used for loading data and are the fastest way to get

data into Oracle. In practice, our text files are never as clean as relational data, so

I recommend keeping the external tables as generic as possible. Instead of doing

conversion and processing through SQL*Loader column definitions, create external

tables with VARCHAR2(4000) columns. Then we can do the conversion and processing

in a separate PL/SQL step. Keeping the external tables simple allows us to at least query

the raw data if there are problems. Exception handling in PL/SQL is more useful than

exception handling with external table definitions.

External tables also let us run an executable preprocessor before loading data. That

preprocessor is intended for things like unzipping a file before loading it. But there are

several creative uses for shell scripts that generate table data. For example, we can create

a preprocessor script with a simple DIR command to list all the files in a directory.2

Index-organized tables (IOT) are stored inside an index. Normally, an index is a

separate data structure, used for performance and constraint enforcement. An index-

organized table combines the table data with the primary key index. If the same index is

always used to access table data, we might as well put more table data inside that index,

instead of requiring a separate table lookup. Index-organized tables can also reduce the

amount of space, since the indexed data is not duplicated. The following code is a simple

example of creating an index-organized table:

--Create index-organized table.

create table iot_table

(

 a number,

 b number,

 constraint iot_table_pk primary key(a)

)

organization index;

2 Adrian Billington’s excellent website describes how to use a preprocessor to generate a list of files
in a directory: www.oracle-developer.net/display.php?id=513.

Chapter 9 Improve the Database wIth aDvanCeD oraCle sChema objeCts

http://www.oracle-developer.net/display.php?id=513

225

 Table Properties
After we define the table type, we can control even more behavior through the many

available table properties. The most important properties are logging, compression,

parallel, deferred segment creation, physical attributes, and flashback archiving. The

tablespace setting is important but is covered later in the chapter when users are

discussed; ideally tables only need one tablespace that is inherited from the user.

The logging clause lets us set the table to either LOGGING or NOLOGGING. This feature is

easy to enable, but the effect of the logging clause is complicated and depends on many

factors. The logging clause helps Oracle decide when to use direct-path inserts. Direct-

path inserts are faster, but they are not recoverable since they don’t generate redo. (Redo

data is described in Chapter 10.) We must tell Oracle when it is acceptable to make that

trade-off. By default, Oracle tries hard to never lose data.

The difficulty with the logging clause is that there are so many ways to tell Oracle

whether or not it is OK to lose data. We can tell Oracle at the database level (is the

database in ARCHIVELOG mode or NOARCHIVELOG mode), at the object level (is the table set

to LOGGING or NOLOGGING), and at the statement level (did the statement ask for APPEND or

NOAPPEND). When Oracle gets conflicting directions, Oracle chooses the option that does

not risk losing data. Table 9-1 shows what happens when we mix logging settings.3

3 This table is based on an old Ask Tom thread: https://asktom.oracle.com/pls/
asktom/f?p=100:11:0::::P11_QUESTION_ID:5280714813869.

Table 9-1. When Will Oracle Generate Redo

Table Mode Insert Mode Log Mode Result

loGGInG appenD arChIveloG redo generated

noloGGInG appenD arChIveloG no redo

loGGInG noappenD arChIveloG redo generated

noloGGInG noappenD arChIveloG redo generated

loGGInG appenD noarChIveloG no redo

noloGGInG appenD noarChIveloG no redo

loGGInG noappenD noarChIveloG redo generated

noloGGInG noappenD noarChIveloG redo generated

Chapter 9 Improve the Database wIth aDvanCeD oraCle sChema objeCts

https://asktom.oracle.com/pls/asktom/f?p=100:11:0::::P11_QUESTION_ID:5280714813869
https://asktom.oracle.com/pls/asktom/f?p=100:11:0::::P11_QUESTION_ID:5280714813869

226

Even the preceding table is not an exhaustive list of when redo will be generated.

There are other things that can prevent direct-path inserts and cause redo generation,

such as tablespace settings, foreign keys, triggers, etc.

Basic table compression can save a huge amount of space and improve

performance. Oracle has many compression options, but only basic table compression

is free. Luckily, basic table compression is usually good enough. Basic table compression

is easy to implement and has virtually no downsides. The problem with basic table

compression is that it’s hard to effectively use.

A table can be compressed but have uncompressed data in it. Only direct-path

writes, or re-organizing the table, will compress table data. (Unless we buy the

advanced compression option, which can compress data all the time.) To know when

to use compression, we need to understand how compression works. It also helps to

understand how data is stored in Oracle, in blocks, as described in Chapter 10.

Oracle compression uses a simple pattern substitution. Each block of data, 8

kilobytes by default, has a symbol table with common values. When those common

values are found in the data, the symbol is used instead of repeating the data. The

following text shows a logical representation of how basic table compression works:

--Launch data as uncompressed comma-separated-values.

LAUNCH_ID,LAUNCH_CATEGORY,LAUNCH_STATUS

4305,orbital,success

4306,orbital,success

4476,orbital,failure

...

--Launch data with simple pattern substitution compression.

LAUNCH_ID,LAUNCH_CATEGORY,LAUNCH_STATUS

LAUNCH_CATEGORY:£=orbital

LAUNCH_STATUS:€=success,¢=failure
4305,£,€
4306,£,€
4476,£,¢

...

The preceding compression example is not the literal data format. A real block is

much more complex and uses short numbers instead of long names for metadata. But

the preceding text is enough to understand when compression may help. The column

Chapter 9 Improve the Database wIth aDvanCeD oraCle sChema objeCts

227

values must be identical for compression to save space. The column values must also

repeat within the same column, not across columns. And the repeated values must

appear within the same block, which means within about 8 kilobytes of each other. Only

each block is compressed, not the entire table. Block compression means the overall

compression ratio may significantly improve if we order the data in the table before we

compress it.

The space saved by compression completely depends on our data. I’ve seen many

tables not shrink at all, and I’ve seen tables shrink up to 33% of their original size. The

following code shows how to create tables with basic table compression enabled and

how to compress tables if we can’t use direct-path inserts.

--Create a compressed table.

create table compressed_table(a number) compress;

--Compression will only happen for direct-path inserts.

--Periodically MOVE table if we can't use direct-path inserts.

alter table compressed_table move compress;

The parallel clause lets us set a degree of parallelism for tables and other objects.

Parallelism is a powerful mechanism to significantly improve performance, but

parallelism may come at the expense of other processes. Parallelism is best defined at

the query level, unless we are absolutely sure that a table should always run in parallel.

The parallel clause can be set to NOPARALLEL (the default), PARALLEL X (where X is

an integer indicating the degree of parallelism), or simply PARALLEL (which uses the

system- determined degree of parallelism – the number of CPUs multiplied by the

parameter PARALLEL_THREADS_PER_CPU). The following code shows an example of

creating a table with a default degree of parallelism:

--Create table with parallelism enabled by default.

create table parallel_table(a number) parallel;

Deferred segment creation lets us create a table without allocating any space. In older

versions of Oracle, whenever we created a table or partition, Oracle would automatically

allocate a segment to hold the data. Those empty segments typically use a few megabytes

of space, although if we use manual segment space management we can define our own

sizes. In extreme cases, like if we pre-build thousands of tables, or create a table with

thousands of partitions, those empty segments can waste a considerable amount of space.

With deferred segment creation that space is not added until it is needed.

Chapter 9 Improve the Database wIth aDvanCeD oraCle sChema objeCts

228

Deferred segment creation is enabled by default and doesn’t have any performance

implications – so why are we even talking about it? A few weird things can happen when

deferred segment creation is used. We can create a table and see that table immediately

in DBA_TABLES, but we won’t see the segment in data dictionary views like DBA_SEGMENTS.

Missing segments can be a problem for programs and scripts that assume the segments

always exist. Deferred segment creation is why the deprecated EXP program may miss

some of our tables.

Deferred segment creation can be disabled when we create a table. Or we can force

Oracle to allocate space, regardless of the data in the table. The following code shows

both options:

--Create a table without deferred segment creation.

create table deferred_segment_table(a number)

segment creation immediate;

--Force Oracle to create a segment.

alter table deferred_segment_table allocate extent;

The physical attributes clause lets us control about a dozen different parameters

related to table storage. These parameters include PCTFREE, PCTUSED, INITRANS, and

the parameters in the STORAGE clause. Don’t touch those parameters unless we know

something that Oracle doesn’t. Many of those parameters aren’t even used anymore.

And if the parameters are used, the defaults are almost always good enough.

The only physical attribute we should set is PCTFREE, which controls how much space

Oracle leaves empty for changes. We want Oracle to pack our data as densely as possible

to save space. On the other hand, if the data is packed too densely, adding a single byte

requires moving a lot of data around. Oracle’s default value is 10%. If we know that our

table will never be updated, we can save 10% of the space by changing PCTFREE to 0.

If our table is updated frequently and we see performance issues from row migration

and row chaining (discussed in Chapter 10), increasing PCTFREE might help. Flashback
archiving and row archival let Oracle tables archive data. Flashback archiving is tricky

to set up and maintain and wasn’t free until 12.1, but it lets us perform flashback queries

on a table indefinitely. Row archival is much simpler and is new in 12.1. When row

archival is enabled for a table, each row has a hidden column. That hidden column will

make data disappear from queries, unless we specifically ask for archived data.

Chapter 9 Improve the Database wIth aDvanCeD oraCle sChema objeCts

229

 ALTER and DROP Table
In addition to creating the right types of tables with the right properties, we also need to

know how to alter those properties and drop tables. The ALTER TABLE syntax is massive,

and we can change just about anything in our tables. ALTER TABLE statements are non-

transactional and can require a lot of downtime. Online table redefinition allows us to

change tables without significant downtime, but that’s a complicated topic not covered

in this book.

Dropping tables is simple but obviously dangerous. Statements like DROP TABLE

TABLE_NAME will put the table in the recycle bin. The recycle bin is enabled by default,

but we should check the RECYCLBIN parameter in V$PARAMETER before we assume it’s

enabled.

Until the table is purged from the recycle bin, the table still uses the same amount

of disk space. We can skip the recycle bin and reclaim that space immediately by adding

the keyword PURGE to the end of the command. In practice, every time we drop a table,

we need to stop and ask ourselves – do we need the space back, and are we 100% sure we

will never need the table again?

The DROP TABLE command also has a CASCADE CONSTRAINTS option. That option

drops any referential constraints that refer to the soon-to-be-dropped table. To be safe,

we should avoid the CASCADE CONSTRAINTS option. It’s hard enough to be 100% confident

that we can drop a specific table. It’s another thing to be 100% confident about a table

and all other tables in the database that might refer to it. It’s safer to manually disable

constraints, use a regular drop command, and generate exceptions if we forgot to disable

a relationship.

 Column Types and Properties
Just like tables, columns come in many types and have many properties. We don’t need

to review the basic types, like VARCHAR2 and NUMBER. But the advanced types have

different storage options, and columns can be defined with several important properties.

XML data can be stored in tables in three different ways. When using the XMLType, we

can choose binary, object-relational, or CLOB. Binary XML storage is the default and is

good for document-centric storage where we don’t know the exact structure of each file

ahead of time. Object-relational storage is good for data-centric storage, where we know

the precise XML schema and we want to optimize and index the data. CLOB storage

is obsolete in 12.1, but that option is good for storing our XML data byte for byte in the

Chapter 9 Improve the Database wIth aDvanCeD oraCle sChema objeCts

230

original format. We should use the default storage unless we have significant XML storage

and processing requirements and are willing to read the XML DB Developer’s Guide.

Large objects (LOBs) also have different storage options. The main difference is

between the old BasicFiles and the new SecureFiles. SecureFiles is backward compatible,

better than BasicFiles in every way, and is the default since 12.1. Unless we run into a bug,

we should use the default SecureFiles. SecureFiles also offers unique features, such as

compression, deduplication, and encryption. But those extra features require additional

licenses. LOBs can have other storage properties, such as a tablespace different than the

table. As always, we should use the defaults unless we have a special case.

Column definitions have a few advanced features. Columns can be set to use a

default value, which can be useful for metadata columns that store the current user and

date. Virtual columns do not store any data, but instead return an expression. Virtual

columns can help us avoid denormalization – we can store data both in its natural

format and in a display format and never worry about synchronization problems.

Column definitions can have inline constraints. The syntax is a bit simpler but it’s better

to create out-of-line constraints. Inline constraints will have a system generated name,

like SYS_C000*, and the name will be different on every database. That name difference

can cause schema comparison headaches. Columns can also be set to invisible, since

12.1. Invisible columns can still be used but won’t show up in a SELECT *. The following

code demonstrates all of these unusual column properties.

--Default, virtual, inline check, and invisible.

create table weird_columns

(

 a number default 1,

 b number as (a+1),

 c number check (c >= 0),

 d number invisible

);

insert into weird_columns(c,d) values (3,4);

select * from weird_columns;

A B C

- - -

1 2 3

Chapter 9 Improve the Database wIth aDvanCeD oraCle sChema objeCts

231

Column defaults can be helpful for setting primary key values. Since 12.1, Oracle has

two new features to help simplify populating primary keys – identity columns and using

a sequence for the default. Creating an identity column automatically creates a sequence

and connects that sequence to the table and column, but with that automation we lose

the ability to control some details of that column. Alternatively, we can create our own

sequence and set a column default to SEQUENCE_NAME.NEXTVAL. Both the identity column

and the sequence default are simpler and faster than previous solutions. In old versions

of Oracle, we would need to either manually call a sequence with each INSERT, create a

trigger that calls a sequence, or use a function like SYS_GUID as a default. The following

are examples of using an identity column and sequence default.

--Identity column and sequence default.

create sequence test_sequence;

create table identity_table

(

 a number generated as identity,

 b number default test_sequence.nextval,

 c number

);

insert into identity_table(c) values(1);

select * from identity_table;

A B C

- - -

1 1 1

 Constraints
Constraints restrict values to enforce relationships and data rules in our relational

databases. I assume you are familiar with the basic constraint types: primary key

(columns that are non-null and unique), unique (columns with no duplicates), foreign

key (columns that share values with a parent table), and check (a condition that must

always be true). But there are other types of constraints and advanced ways of using

constraints.

Chapter 9 Improve the Database wIth aDvanCeD oraCle sChema objeCts

232

 Constraint Performance Impact
Constraints can significantly harm performance. Direct-path writes are not possible

on a child table with a foreign key. (But at least foreign keys don’t stop direct-path

writes on the parent table, and the limitation does not apply to reference partitioned

tables.) Constraints can be disabled and re-enabled but that process can be slow. Every

constraint requires time to validate, and primary key and unique constraints must spend

time maintaining indexes. (But most constraint enforcement time is either trivial, like for

check constraints, or has workarounds, such as the way direct-path writes will perform

bulk index maintenance instead of row by row.)

Constraints can also significantly improve performance. For example, NOT NULL check

constraints can enable the optimizer to use an index. The following statements perform

a distinct count on two indexed columns, SATELLITE.SATELLITE_ID and SATELLITE.

LAUNCH_ID. The query on SATELLITE.SATELLITE_ID can use an index – the column is NOT

NULL and therefore the index contains all values. The query on SATELLITE.LAUNCH_ID

cannot use an index – the column is nullable and therefore the index may not contain all

the values. If possible, setting columns to NOT NULL can enable new index access paths.

(But in our data set that NOT NULL constraint is not possible – there is one satellite without

a known launch.)

--This statement on a NOT NULL column can use an index.

select count(distinct satellite_id) from satellite;

--This statement on a nullable column cannot use an index.

select count(distinct launch_id) from satellite;

Performance issues shouldn’t prevent us from using constraints. Data integrity is

more important than performance. And the performance benefits of constraints may

outweigh the performance costs. And when we encounter performance problems

caused by constraints, there is always a workaround.

 Altering Constraints
Constraints can be added, dropped, enabled, and disabled. To preserve our

configuration it’s better to enable and disable constraints than to drop and re-add them.

Constraints belong to tables, and most constraint commands happen through ALTER

TABLE. To demonstrate some constraint properties, let’s make an empty copy of the

Chapter 9 Improve the Database wIth aDvanCeD oraCle sChema objeCts

233

ORGANIZATION table. The following code creates an initially empty table, adds a unique

constraint, disables the constraint, and loads the data.

--Create separate table for organization data.

create table organization_temp nologging as

select * from organization

where 1=2;

--Create a unique constraint.

alter table organization_temp

add constraint organization_temp_uq

unique(org_name, org_start_date, org_location);

--Disable the constraint.

alter table organization_temp

disable constraint organization_temp_uq;

--Load data.

insert into organization_temp

select * from organization;

 Constraint Exceptions
The preceding code runs but it contains a mistake. Our unique constraint is not unique

enough. There are a few organizations that share the same name, start date, and

location. The constraint is disabled, and as soon as we try to enable the constraint, we’ll

get an error.

Constraint errors don’t tell us the data that caused the error. That lack of details isn’t

a problem with our small tables, we can easily find the duplicates. But with complicated

constraints, or huge amounts of data, those errors can be difficult to track down. We can

use the exceptions clause to find the values that caused constraint errors, similar to the

way DML error logging can find the values that caused DML errors.

Setting up constraint exceptions is more complicated than setting up DML error

logging. There’s no convenient DBMS_ERRLOG package to create exception tables. Instead,

Chapter 9 Improve the Database wIth aDvanCeD oraCle sChema objeCts

234

we need to call a script stored in the server installation directory. If our ORACLE_HOME

environment variable is set correctly, we can run the script like this:

SQL> @?\rdbms\admin\utlexpt1

Table created.

Make sure you run the preceding script as the owner of the data set, or set the

CURRENT_USER before running the script. If the preceding code doesn’t work, then we can

find the script online and recreate the table manually. Once we have the table, we can

use the following syntax to save any exceptions.

--Try to enable a constraint that isn't valid.

alter table organization_temp

enable constraint organization_temp_uq

exceptions into exceptions;

The preceding code still throws the same error: “ORA-02299: cannot validate

(SPACE.ORGANIZATION_TEMP_UQ) - duplicate keys found.” But now it’s easy to find

the culprits, with the following SQL:

--Rows that blocked the constraint.

select *

from organization_temp

where rowid in (select row_id from exceptions);

 NOVALIDATE and Parallel Constraints
There are a few duplicates in our sample schema, but that’s understandable for 80-year-

old data. We can’t always fix bad data but we can at least prevent more bad data from

happening. The NOVALIDATE option lets the constraint ignore existing exceptions and

prevent future exceptions.

The NOVALIDATE option is a bit tricky to use with unique constraints because unique

constraints must also work with indexes. To create a not-so-unique unique constraint,

we must first create a non-unique index. The following code creates an index, enables

the constraint, ignores existing bad data, and uses a specific index to maintain the

constraint.

Chapter 9 Improve the Database wIth aDvanCeD oraCle sChema objeCts

235

--Create a non-unique index for the constraint.

create index organization_temp_idx1

on organization_temp(org_name, org_start_date, org_location)

compress 2;

--Enable NOVALIDATE the constraint, with a non-unique index.

alter table organization_temp

enable novalidate constraint organization_temp_uq

using index organization_temp_idx1;

The USING clause, disabling, and validating constraints are also helpful for

performance. Data warehouses often improve the performance of loading data by

removing constraints and indexes. But those constraints and indexes need to be

re-added when the data load is complete. The USING clause lets us create our index

however we want, perhaps with performance-enhancing options such as compression,

parallelism, and NOLOGGING. To re-enable constraints in parallel, we must first create

them with DISABLE and then VALIDATE them as a separate step.

Demonstrating parallel constraint re-enabling is difficult and requires a lot of setup

work. To conserve space, the prep work for creating a large version of the ORGANIZATION

table is only shown in the repository. Let’s assume that we have created a large table,

loaded data, and now we want to re-add the constraints in parallel. The following four

steps show how to re-enable constraints in parallel.

--Set the table to run in parallel.

alter table organization_parallel parallel;

--Create constraint but have it initially disabled.

alter table organization_parallel

add constraint organization_parallel_fk foreign key (parent_org_code)

references organization_parallel(org_code) disable;

--Validate constraint, which runs in parallel.

alter table organization_parallel

modify constraint organization_parallel_fk validate;

--Change the table back to NOPARALLEL when done.

alter table organization_parallel noparallel;

Chapter 9 Improve the Database wIth aDvanCeD oraCle sChema objeCts

236

Running constraints in parallel may seem like an unusual case, but these steps are

important and also demonstrate a larger principle. Because of Amdahl’s law (discussed

in Chapter 16), if we’re going to parallelize a process, we need to parallelize all of the

steps. There are many data warehouse processes that parallelize and optimize the

obvious data loading steps, only to spend the majority of time recreating indexes and

rebuilding constraints serially. Oracle has all these weird constraint features for a reason.

Don’t bother trying to memorize the constraint syntax, just remember that there is

always a workaround to constraint performance problems.

 Other Constraints
Views can be created using a WITH READ ONLY constraint, preventing them from

being changed as part of an updatable view. Views also have the WITH CHECK OPTION

constraint, which allows updatable views to only modify specific values. View constraints

don’t prevent bad data, view constraints only prevent bad data from being created

through views. As discussed in Chapter 8, updatable views are difficult and should be

used with caution.

Oracle constraints are limited to enforcing rules within a table, or referential integrity

between two tables. We should use constraints instead of triggers when possible, but

constraints can’t compare multiple tables. Hopefully a future version of Oracle will

include an ASSERT command that lets us define complex business rules in a single

statement. For now, there is a workaround discussed later in the materialized view

section.

This book focuses on practical solutions, yet this section used a lot of weird code to

demonstrate obscure features. And other unusual constraint features were discussed in

previous chapters, such as cascading deletes and deferrable constraints. Constraints are

one of the few areas worth discussing in depth. Constraints are critical, and we need to

keep our data as clean as possible. Once again, don’t worry if you can’t remember all the

syntax. The important point to remember is that there’s always a way to enforce the data

rules we need. And there’s always a way to enforce those rules efficiently.

Chapter 9 Improve the Database wIth aDvanCeD oraCle sChema objeCts

237

 Indexes
Indexes are data structures that mirror table data but are organized in a way to improve

performance. Oracle has a ridiculous number of index options and they are only briefly

discussed in this section. Before we discuss the options, it’s important to have a good

understanding of what indexes are and how indexes work. We need a good theoretical

understanding of indexes to know how to use them and when they won’t work. Many

databases are littered with useless indexes because a developer thought an index would

magically solve a performance problem. Many databases suffer because their indexes

are missing that one, small feature that would make the indexes useful.

 Index Concepts
To understand indexes we must first think about searching for data. Let’s start with a

simple children’s guessing game, where we have to find a number between 1 and 8. The

simplest way to search for the number is to start with 1, then guess 2, then 3, etc. On

average, using that linear search algorithm, it will take 4 guesses to find the number.

Luckily, we all know a better way to play the guessing game – guess a number in the

middle, ask if the number is lower or higher, and repeat. This binary search algorithm

eliminates as many numbers as possible each time and narrows down the results

quickly. We can visualize this binary search strategy with Figure 9-1. The diagram is

shaped like a tree, and at each branch of the tree, we must make a simple decision: go

left if our guess is too high, and go right if our guess is too low.

Figure 9-1. A binary search to find the number 5

Chapter 9 Improve the Database wIth aDvanCeD oraCle sChema objeCts

238

Using the binary search algorithm, on average we can find the number in 3

guesses. So far our binary search algorithm is only slightly better than our linear search

algorithm: 3 guesses instead of 4. The difference in the algorithms becomes more

noticeable when we increase the size. If we double the number range to 16, the average

number of linear search guesses also doubles, to 8. But the average number of binary

search guesses only increase from 3 to 4.

Let’s scale up the example to our data set. Let’s say we want to find a launch, with the

following query:

select * from launch where launch_id = :n;

The data is stored in a heap table, in no particular order. If we search through the

table of 70,535 launches with a linear search, it would require an average of 35,268

comparisons. A binary search could find the row in at most 17 comparisons, since

2^17 = 131,072, which is greater than 70,535. The principles of a children’s guessing

game scale up nicely to help us quickly find real data.

It is helpful to use a more mathematical explanation for what’s going on with our

searching. When we count in binary, the powers-of-two exponentiation grows quickly.

We probably understand binary growth intuitively; for example, we know that 32 bits

allows for about 4 billion numbers: 2^32 = 4,294,967,296. Binary searching works in

reverse, and logarithms are the opposite of exponents. Therefore we can say that a binary

search of N rows requires approximately LOG2(N) comparisons. As opposed to a linear

search on N rows, which requires approximately N/2 comparisons. Those mathematical

expressions will be useful for understanding indexes in just a minute.

An index is a data structure that is similar to the binary tree displayed in

Figure 9- 1. Of course the real index structure is more complicated than our example.

Oracle’s default index uses a B-tree index; there’s a root branch block at the top, branch

blocks in the middle, and leaf blocks at the bottom. Each block contains hundreds of

values instead of just one. The leaf blocks don’t just contain the column value, they also

contain a ROWID that references the table row, as well as pointers to the next and last

leaf block in order. (The pointers are why Figure 9-1 seems to have an extra row at the

bottom – there is a lookup from the leaf block to a table block.) In practice, it’s extremely

rare to have an index more than four levels deep. (We can count the height of an index

using DBA_INDEXES.BLEVEL+1.) Also, real indexes have empty space for new values and

may be unbalanced.

Chapter 9 Improve the Database wIth aDvanCeD oraCle sChema objeCts

239

We can learn a lot about indexes by combining the tree data structure in Figure 9-1

with our simple algorithm for traversing the tree. The most important lesson is why index

access is not always faster than a full table scan. For finding a single value, the number

of comparisons is LOG2(N) for an index versus N/2 for a full table scan. For finding one

value, the index is clearly the winner.

But what if we’re looking for a value that exists in almost every row? Searching

an index for every row means we need to walk the tree N times. Now the number of

comparisons is N*LOG2(N) for the index versus N/2 for the full table scan. For finding all

values, the full table scan is clearly the winner.

Index access comparisons get even more complicated when we consider block

access time. Storage systems can read a large amount of data more efficiently than they

can read multiple small amounts of data. In the time it takes the system to read two index

blocks, one at a time, the system may be able to read 64 blocks from a full table scan.

A dumb multi-block read may be better than a smart single-block read.

The clustering factor may also work against indexes. For example, let’s say we

only need to scan 1% of an index. 1% sounds like a small number of searches, but that

number is not the whole story. After we read the index blocks, we also need to access

the table blocks. If the rows we need are randomly distributed, we may still need to read

100% of the table, one block at a time. DBA_INDEXES.CLUSTERING_FACTOR is a measure of

how much the data is disordered. A good, low clustering factor means the values in one

index block all refer to the same table block. A bad, high clustering factor means the rows

in an index block are scattered all over the place.

Indexes are perfect for accessing a small amount of data from a table. Indexes may

be a bad choice for accessing a large amount of data from a table. It’s hard to know where

the tipping point is and when an index isn’t worth it anymore. We need to consider how

an index works, multi-block reads, and the clustering factor.

 Index Features
Indexes are an indispensable part of database performance. It’s a great feeling when

a statement as simple as CREATE INDEX SOME_INDEX ON SOME_TABLE(SOME_COLUMN)

makes our queries run a million times faster. But performance tuning is not always that

easy. Simple indexes aren’t always enough, so we need to be aware of the many different

ways to use, create, and alter indexes.

Chapter 9 Improve the Database wIth aDvanCeD oraCle sChema objeCts

240

First we need to understand how Oracle can use an index. The tree traversal we saw

in Figure 9-1 is the most common algorithm, but there are several others.

 1. Index unique and index range scan: The traditional way to read

an index, by traversing the tree from top to bottom. Ideal when we

only need a small percentage of rows from a table.

 2. Index fast full: Reads the entire index with multi-block reads.

Ideal when we need a large percentage of rows, and all of the

columns we need are in the index. The index can be used as a

skinny version of the table.

 3. Index full: Reads the entire index, in order. Slower than

an index fast full, because single-block reads are used instead of

multi-block reads. The advantage is that the data is returned in

order, which can avoid sorting.

 4. Index skip scan: Uses a multicolumn index even though the

leading index columns aren’t referenced. This access method is

slow, especially if the leading columns have a high cardinality, but

it’s better than nothing.

 5. Index joins: Reads data from multiple indexes and joins the

indexes together instead of tables.

Bitmap indexes are useful for low-cardinality data – columns with few distinct

values. A bitmap is a list of ones and zeroes that map whether each row has a specific

value. For example, in our data set, LAUNCH.LAUNCH_CATEGORY is a good candidate

for a bitmap index. The following code creates a bitmap index, along with a simple

visualization of what that bitmap index might look like.

--Create bitmap index on low-cardinality columns.

create bitmap index launch_category_idx

on launch(launch_category);

military missile : 111000000...

atmospheric rocket: 000111000...

suborbital rocket : 000000111...

...

Chapter 9 Improve the Database wIth aDvanCeD oraCle sChema objeCts

241

Each bitmap stores 70,535 ones or zeroes, where each bit corresponds to a row. This

format is why bitmap indexes only work well for low-cardinality columns. Although

70,535 bits is not a lot of data, that size must be repeated for each unique value. On the

other hand, Oracle can compress the bitmap indexes, so the actual storage may be much

smaller. LAUNCH.LAUNCH_CATEGORY only has ten distinct values, so even in the worst case

of using 70,535 bits for each value, not a lot of space is wasted.

The bitmap format makes it easy to perform comparison operations. If we also

created a bitmap index on LAUNCH.LAUNCH_STATUS, we could quickly run queries that

filtered on both the category and the status. Oracle could combine the two bitmaps with

a BITMAP AND operation. Comparing lists of ones and zeroes is something any computer

can do efficiently.

Bitmap indexes have concurrency issues and should not be used on tables that

are frequently changed. While we may think of the bitmap format as a list of ones and

zeroes, Oracle’s bitmap compression may significantly shrink that format. Oracle may

compress a range of values and store the equivalent of a note that says “rows 1 to 10,000

are all 0.” If we update the table and change a value in the middle of that range, Oracle

has to recompress the bitmap index. That recompression means changing a single value

may lock a huge number of rows. Frequently updating a table with bitmap indexes will

lead to long waits and deadlock errors.

Index compression can save a lot of space and improve performance. Index

compression is similar to basic table compression – they both use a simple pattern

substitution. But index compression is better than table compression in several ways.

Index compression works regardless of the types of table changes and does not require

direct-path inserts. And index compression has virtually no CPU overhead. Indexes are

stored with the leading columns first, so compression only works if the leading columns

are repetitive.

Oracle indexes can include multiple columns. If we know certain columns will

always be queried together, it may make sense to put them in the same index. Or we can

have a separate index for each column. Or we can have both – one multicolumn index

and many individual indexes. But we don’t want to go crazy creating indexes. Each index

uses space and requires extra time to maintain when the table is changed.

Function-based indexes are built on expressions. Function-based indexes are useful

when we query a column by a modified version of the value. For example, when looking

for launches, most of the time we only care about the date, not the time. If we add a

normal index on the LAUNCH.LAUNCH_DATE, we could use a BETWEEN query to get an index

Chapter 9 Improve the Database wIth aDvanCeD oraCle sChema objeCts

242

range scan. But we would also have to define two dates and specify the seconds, which is

annoying. It’s easier to query the table using the TRUNC function and only compare dates.

But the TRUNC function does not work with a normal index. The following code creates

and uses a function-based index on the launch date.

--Create function based index.

create index launch_date_idx

on launch(trunc(launch_date));

select *

from launch

where trunc(launch_date) = date '1957-10-04';

 Rebuilding Indexes
Indexes can be turned on or off, similar to constraints. But instead of ENABLE and

DISABLE, indexes are USABLE or UNUSABLE. Making indexes unusable is as simple as ALTER

INDEX LAUNCH_DATE_IDX UNUSABLE, and making indexes usable is as simple as ALTER

INDEX LAUNCH_DATE_IDX REBUILD. In addition to enabling and disabling indexes, we can

keep an index enabled but make it invisible. An invisible index is still maintained but is

ignored by the optimizer. We can change the visibility of indexes to test the performance

impact of index changes.

Unless we’re rebuilding the entire schema, modifying an index is simpler than

dropping and recreating an index. Our indexes may have lots of properties set, and we

don’t want to lose those properties during an index rebuild.

Indexes have many of the same configuration options as tables. Indexes can be set

to parallel, but like with tables we should avoid setting a default degree of parallelism.

Indexes can have separate tablespaces, but like with tables we should avoid creating

many tablespaces. (And please ignore the myth that indexes and tables need separate

tablespaces, unless you are an expert in your storage system and are prepared to

thoroughly test performance.) Indexes can also be set to NOLOGGING, but unlike tables

the repercussions of using NOLOGGING are not as bad; if an index is unrecoverable, we

can simply recreate the index from the table data. Similar to tables, indexes can also be

partitioned, which is described in a later section.

Oracle index rebuilding is a contentious topic. There are clearly times when we must

rebuild an index, if the index was made unusable during a maintenance operation or if

Chapter 9 Improve the Database wIth aDvanCeD oraCle sChema objeCts

243

we want to change index properties. But we should not rebuild indexes frequently for

performance reasons, or as part of a periodic “maintenance” procedure. Other than a

few rare exceptions, Oracle indexes are self-balancing and don’t need to be rebuilt.

When we do need to rebuild indexes, there are several options to make the process

faster and non-disruptive. The ONLINE option will let the index still be used in queries,

while a new version of the index is built. We can combine the ONLINE option with other

options to rebuild the index quickly and then change the properties back to their original

values.

--Rebuild online, quickly, and then reset properties.

alter index launch_date_idx rebuild online nologging parallel;

alter index launch_date_idx logging noparallel;

 Partitioning
Partitioning divides tables and indexes into smaller pieces to improve performance and

manageability. Partitioned tables look like regular tables to our SQL statements. Behind

the scenes, Oracle can adjust our statements to only access the relevant partitions,

instead of accessing all partitions. Partitioning is fully described in the 421-page

VLDB and Partitioning Guide. This section gives a brief overview of partitioning and is

more focused on understanding why partitioning works than listing the hundreds of

partitioning features.

 Partitioning Concepts
Although partitioning is described in the Very Large Database manual, partitioning

can help databases of any size. Partitioning is about the percentage of the data we’re

accessing, not just the size of the data. Partitioning and indexing solve two different kinds

of performance problems; indexes work best for retrieving a small percentage of rows,

whereas partitions work best for retrieving a large percentage of rows.

Let’s use an example to understand the fundamental mechanism of partitioning.

Most of the examples in this book filter the LAUNCH table by the column LAUNCH_

CATEGORY. We rarely want to query across all launches; there’s a huge difference between

sounding rockets that perform weather experiments and orbital launches that put a

satellite into orbit.

Chapter 9 Improve the Database wIth aDvanCeD oraCle sChema objeCts

244

Our goal is to optimize this SQL statement: SELECT * FROM LAUNCH WHERE LAUNCH_

CATEGORY = 'orbital'. That SQL statement retrieves a relatively large percentage of

rows. As discussed in the last section, there are several reasons why indexes cannot help

us retrieve a large percentage of rows. We want the efficiency of multi-block reads from

a full table scan, but we don’t want to read the entire table. To understand partitioning,

let’s first achieve our goal the hard way. We can get multi-block read efficiency and

exclude most of the rows, by creating multiple tables and putting them together in a

view.

First, we create a table for each launch category. There are only ten launch

categories, so creating the tables doesn’t take too long. (Only the first part of this large

example is listed here. See the repository for the full example code.)

--Create a table for each LAUNCH_CATEGORY.

create table launch_orbital as

select * from launch where launch_category = 'orbital';

create table launch_military_missile as

select * from launch where launch_category = 'military missile';

...

Next, create a view named LAUNCH_ALL that stitches together those tiny tables.

--Create a view that combines per-category tables together.

create or replace view launch_all as

select * from launch_orbital

where launch_category = 'orbital'

union all

select * from launch_military_missile

where launch_category = 'military missile'

...

Finally, we can query from the preceding view and get optimal performance.

The results are the same as querying directly from the large table. Oracle can read the

view definition, understand that only one of the ten tables can satisfy the predicate

LAUNCH_CATEGORY = 'orbital', and will only read from that table. At first this solution

looks like the best of all worlds; we query the view like it’s a huge table, but the view acts

like a small table.

Chapter 9 Improve the Database wIth aDvanCeD oraCle sChema objeCts

245

--These return the same results but LAUNCH_ALL is faster.

select * from launch where launch_category = 'orbital';

select * from launch_all where launch_category = 'orbital';

We just built a bargain-basement partitioning scheme. Our single-use example

worked fine, but the solution is horribly broken. We can’t update LAUNCH_ALL, we’ll run

into problems with updatable views. Creating the tables and views was a chore and

required repeating the predicates. If we wanted to create indexes, we’d have to create an

index for each table.

Real partitioning automates the previous steps and creates a table that works

optimally and flawlessly. Oracle creates a segment for each partition, which behaves just

like a table. Oracle perfectly understands the mapping between those segments and the

table, and all table operations work automatically on the partitioned table.

The following code shows how to create a real partitioned LAUNCH table. There’s some

new syntax, but the new code is much simpler than explicitly creating extra tables, views,

and indexes.

--Create and query a partitioned launch table.

create table launch_partition

partition by list(launch_category)

(

 partition p_sub values('suborbital rocket'),

 partition p_mil values('military missile'),

 partition p_orb values('orbital'),

 partition p_atm values('atmospheric rocket'),

 partition p_pln values('suborbital spaceplane'),

 partition p_tst values('test rocket'),

 partition p_dep values('deep space'),

 partition p_bal values('ballistic missile test'),

 partition p_snd values('sounding rocket'),

 partition p_lun values('lunar return')

) as

select * from launch;

select *

from launch_partition

where launch_category = 'orbital';

Chapter 9 Improve the Database wIth aDvanCeD oraCle sChema objeCts

246

Why didn’t we simply create the preceding partitioned table and skip the poorly built

version with multiple tables and views? It’s important to understand that partitioning

is not magic. Too many SQL developers always partition large tables and assume

partitioning will help performance. Partitioning is just an automatic system to break

large tables into small tables. If we can’t think of a way that querying multiple smaller

tables could improve our SQL statements, then partitioning won’t help.

 Partitioning Features
Partitioning has a huge number of features. Oracle provides many ways to divide tables

into partitions, use partitions, and index partitions.

The most important partitioning decision we have to make is how to divide our table

into partitions. We need to determine the “chunks” of data that our SQL statements will

most often reference. The following list includes the most common partition options.

 1. List: Each partition maps to a list of values and can include a

DEFAULT value to cover everything else. Useful for low-cardinality

discrete values, such as a status or category column.

 2. Range: Each partition contains a range of values. Each partition

is defined as values less than a specific literal, or the MAXVALUE

to cover everything else. Useful for continuous values, such as

numeric and date values.

 3. Hash: Each partition contains a random row, based on the hash

of a value. Useful for data that we want to split into groups but

we don’t care about the precise grouping. Typically only useful if

multiple tables are partitioned the same way and we plan to use

partition-wise joins.4 The partition number should be a power of 2

or the partition sizes will be skewed.

4 Partition-wise joins work one partition at a time. Joining per partition instead of per table can
significantly decrease the memory requirements and improve performance. But partition-wise
joins only happen if the tables are partitioned the exact same way and the join uses the partition
column. Most hash-partitioned tables are a mistake because programmers incorrectly think
partition-wise joins happen with every join.

Chapter 9 Improve the Database wIth aDvanCeD oraCle sChema objeCts

247

 4. Interval: Same as range partitioning, except the ranges do not

need to be fully specified. Only an initial value and an interval

must be defined and Oracle will automatically create the

necessary partitions. Useful for continuous values that will grow.

 5. Reference: Uses list, range, hash, or interval partitioning, but lets

the child table automatically follow the partitioning scheme of the

parent table. The partitioned columns are not repeated so this is

useful for saving space in parent–child tables.

 6. Composite: Combinations of list, range, hash, and interval, into

partitions and subpartitions.

After we choose the partition type, we must choose the number of partitions. The

number of partitions involves trade-offs and depends on how we are going to access

the table. A large number of small partitions lets us more quickly access only the data

we need. But the larger the number, the larger the overhead and the more difficult it is

to manage. Oracle does a good job of managing things like metadata and statistics for

partitions; but if we end up with a million partitions, the data dictionary is going to grind

to a halt. We might want to err on the side of fewer partitions. For example, even if our

queries access a table for data one day at a time, weekly interval partitioning might be

good enough.

Partitions, like tables, have many properties. Partitions inherit their properties from

their table, but it may make sense to customize properties for different partitions. For

example, for a table range partitioned by a date, we may want to set the old partitions to

COMPRESS, if the old partitions are never updated.

Parallelism is the most misunderstood partitioning feature. Parallelism and

partitioning tend to go together, since both of them help with large data. But we do

not need to use one to take advantage of the other. On the surface, parallelism and

partitioning sound similar – they both break large tables into smaller pieces. But parallel

SQL works just as well on non-partitioned tables as on partitioned tables. Parallelism

doesn’t have to use the partition chunks, parallelism can divide up the table by itself into

pieces called granules.

Partition exchange is used in data warehouses to help load data. We can take our

time loading data into a temporary staging table. When we’re done with the load, and

verified the data, we can swap that whole staging table with the production partition.

The exchange operation is only a metadata change and runs much faster than inserting

the data.

Chapter 9 Improve the Database wIth aDvanCeD oraCle sChema objeCts

248

There are multiple syntax options for performing partition maintenance. The

following code shows an example of deleting from a partitioned table using the partition

extension clause and truncating the same partition using an ALTER TABLE command.

--Partition administration examples.

delete from launch_partition partition (p_orb);

alter table launch_partition truncate partition p_orb;

Partitioned tables can have indexes. Mixing partitioning and indexing gives us the

best of both worlds – we can use the partitions to efficiently retrieve a large percentage

of data, and we can use the indexes to efficiently retrieve a small percentage of data.

Indexes on partitioned tables can be either global or local. A global index is a single

tree that spans all the partitions. A local index is created as a separate index for each

partition.

 Views
Views are stored SQL statements. We can reference views instead of repeating the same

SQL statement multiple times. Views only store the logic, not the data. Materialized views

include actual data and are discussed later in this chapter. There aren’t many advanced

features for views, and previous chapters and sections have already discussed updatable

views and view constraints. But there are issues with creating and expanding views.

 Creating Views
Creating views is simple. Two of the view creation options are OR REPLACE and FORCE.

There’s not much mystery to how those options work; OR REPLACE means the view

will over-write an existing view, and FORCE means that the view will be created even if

something in the view doesn’t exist. The following code demonstrates these two options.

--View with "OR REPLACE" and "FORCE".

create or replace force view bad_view as

select * from does_not_exist;

--The view exists but is broken and throws this error:

--ORA-04063: view "SPACE.BAD_VIEW" has errors

select * from bad_view;

Chapter 9 Improve the Database wIth aDvanCeD oraCle sChema objeCts

249

The interesting thing about those two options is that they are not properties of the

view, they are simply instructions for how to create a view. When we look at view source

code through DBMS_METADATA.GET_DDL, or by clicking a button in our IDE, the programs

do not necessarily return the options we used to initially create the view. The programs

only return the options they think we might want to use next time.

There’s a potential difference between the DDL we used to create the view and the

DDL returned by metadata tools. This difference is another example of why we should

store our code in version-controlled text files, instead of relying on the database to

recreate our objects. Maybe we don’t want to replace the view if the view already exists –

perhaps the view creation was part of a non-repeatable process. Maybe we don’t want to

force the creation of the view – perhaps we want our script to fail as soon as an error is

detected. The data dictionary cannot perfectly recreate our processes and has to make

guesses. We should aim for 100% reproducibility in our build scripts so we have to watch

out for these tiny differences.

 Expanding Views
In theory, views should be a wonderful tool for improving our code. “Don’t repeat

yourself” is perhaps the most important programming rule, and views can help us

follow that rule. In practice, views often become a mess. Too many SQL developers don’t

follow common programming advice, like using meaningful names, indenting, adding

comments, etc. We must treat SQL, and especially views, as miniature programs.

One of the most annoying problems with views is when they become deeply nested.

Nesting inline views is great, because each step is simple and we can easily see and

debug the entire statement. Nesting regular views is different, especially when the views

are large and poorly built.

Oracle provides tools to help us expand our views and view all of the code at once.

12c has the procedure DBMS_UTILITY.EXPAND_SQL_TEXT, and 11g has the undocumented

procedure DBMS_SQL2.EXPAND_SQL_TEXT. The following code demonstrates creating a

nested view and expanding the view to show all the code at once.

--Create nested views and expand them.

create or replace view view1 as select 1 a, 2 b from dual;

create or replace view view2 as select a from view1;

Chapter 9 Improve the Database wIth aDvanCeD oraCle sChema objeCts

250

declare

 v_output clob;

begin

 dbms_utility.expand_sql_text('select * from view2', v_output);

 dbms_output.put_line(v_output);

end;

/

Unfortunately, the output from the preceding anonymous block looks horrible. The

following results are technically correct but almost unreadable.

SELECT "A1"."A" "A" FROM (SELECT "A2"."A" "A" FROM (SELECT 1 "A",2 "B"

FROM "SYS"."DUAL" "A3") "A2") "A1"

The preceding mess is why some organizations have guidelines to not nest views

more than one level deep. Another potential issue with nesting views is performance.

Oracle has many ways to rewrite and transform our SQL. When we reference a huge

view, but only use a small part of it, Oracle may be able to avoid running the unnecessary

parts. But not always. It’s difficult to tell exactly when Oracle can throw out the

unnecessary parts of views. If we’re constantly using large views, only for one small

piece, we’re going to run into performance problems.

Don’t let the preceding problems prevent you from using views. With the right

features, styles, and discipline, we can build impressive systems with views. If we

combine views and INSTEAD OF triggers, we can create an abstraction layer that can be

simpler than our tables and isolated from data model changes.

 Users
Oracle users serve two purposes – they are a schema5 that contains objects, and they are

an account that can logon to the database. Many SQL developers are given an account by

a more privileged user, and never consider user management. But as part of an efficient

database development process, we need to be comfortable with creating, altering, and

5 To make things even more confusing, Oracle has an unrelated CREATE SCHEMA command.
The CREATE SCHEMA command does not create a user, the command is for creating multiple
objects with one statement. This unusual command is useful for creating tables with circular
dependencies.

Chapter 9 Improve the Database wIth aDvanCeD oraCle sChema objeCts

251

dropping user accounts. The advice in this section is geared toward developers creating

application accounts, not for DBAs creating user accounts.

Creating users is simple, all we need is a username and a password. But in practice

we should always put more thought into creating our users or we will regret it later. 18c

has a new option to use LDAP integration for managing the password and also lets us

specify NO AUTHENTICATION, for an application account that doesn’t logon. For security

reasons, Oracle applications typically have two users: the application schema that owns

all the objects but never logs on and the user account that logs on and accesses those

objects. For the application schema, it’s nice to not have a password, to completely

prevent the possibility of logging on.

Our application user passwords need to be long and complicated. There are many

password verification functions out there, we might as well generate a password that will

satisfy them all. Always combine multiple lowercase, uppercase, numbers, and a few

special characters. And use the full 30 bytes. Oracle’s password hashing algorithms are

insecure, and having a longer password will at least make the hashes harder to crack.

Ideally, the only time we ever need to worry about tablespaces is when we create

a user. Applications should have their own tablespace, or at least not share the default

USERS tablespace with other accounts. The USERS tablespace tends to fill up from ad

hoc SQL statements, and we don’t want a full USERS tablespace to break our application.

Applications should also have access to store things in the tablespace, usually through

QUOTA UNLIMITED ON TABLESPACE_NAME.

Applications should also have a non-default profile. Profiles are used to limit user

connections, require periodic password changes, etc. Even if we don’t care about the

security implications, and just want infinite connections and unlimited password

lifetimes, we still need to worry about the profiles. Most databases use a default profile

that will limit the concurrent sessions and expire the password. If we don’t choose

the right profile, our application may break when the activity increases or when the

password expires.

The following command is an example of how we may want to create an application

or application user account.

--Create an application user account.

create user application_user

identified by "ridiculouslyLongPW52733042#$%^"

--Schema account option:

-- account lock

Chapter 9 Improve the Database wIth aDvanCeD oraCle sChema objeCts

252

--18c schema account option:

-- no authentication

profile application_profile

default tablespace my_application_tablespace

quota unlimited on my_application_tablespace;

We’re getting close to database administration, which is not the topic of this book.

But SQL developers should be involved with creating, altering, and dropping application

accounts.

We should be careful, but not scared, of dropping accounts. At least in our sandbox

environments. Other than production, we don’t perform much maintenance on

application accounts. Which means those non-production accounts get full of junk

and should be frequently dropped and recreated. The process was described in

Chapter 2 and begins with the following command. Even though this is a nonworking

sample command, I have intentionally commented it out. Dangerous commands

need an extra level of protection. Commenting isn’t the only way to protect us from

dangerous commands; we might put an extra prompt in our scripts, give the script a

dangerous- sounding name, etc.

--Drop user and all its objects and privileges.

--drop user application_user cascade;

 Sequences
Sequences generate unique numbers, typically for surrogate primary keys. Sequences

are another object that’s simple to create but has a few unexpected behaviors.

A common request for sequences is to generate a sequence without gaps. Gapless

sequences are not possible, don’t bother trying. Sequences are built for scalability,

whereas creating a gapless sequence of numbers would require serializing transactions.

If the user Alice increments a sequence as part of a transaction and then Bob increments

the same sequence for another transaction, what happens if Alice executes a rollback?

There are two ways to handle that situation: either Alice’s sequence number is given up

and creates a gap, or Bob’s transaction cannot start until Alice is done. Oracle has chosen

the first option, enabling sequences to scale for large multiuser environments. If we

really need a gapless sequence (and chances are good we don’t, we just think removing

Chapter 9 Improve the Database wIth aDvanCeD oraCle sChema objeCts

253

gaps would look nicer), we’ll need to create our own custom serialization process that

ensures only one user gets a number at a time.

We should avoid dropping and recreating sequences, other than in our initial build

scripts. For basic sequence maintenance we should use ALTER SEQUENCE commands

when possible. Recreating sequences is not trivial, mostly because sequences may be

granted to roles and users.

The most common sequence maintenance is resetting the sequence to a new value.

Applications or ad hoc SQL statements may forget to use the sequence to insert a value,

which means the sequence may eventually generate the same value and cause unique

constraint violations. The simplest way to reset a sequence, since version 12.1, is this

command:

--Create and alter a sequence.

create sequence some_sequence;

alter sequence some_sequence restart start with 1;

Resetting sequences in 11g is more painful: change the sequence interval to a large

value, call the sequence, and then change the interval back to 1. Or perhaps we can

simply call SOME_SEQUENCE.NEXTVAL repeatedly.

Calling the sequence many times is much slower than altering the sequence but

has the advantage of avoiding any DDL commands. This approach can be useful in

a production environment when we might need to fill out lots of paper work to run a

“change,” but simply selecting from a sequence does not count as a change.

Sequences don’t have to start with 1 and increment by 1, sequences have several

other options. Sequences can START WITH any number, and they can INCREMENT BY any

number, even a negative number to make the sequence decrease. Sequences can CYCLE

back to the MINVALUE after the MAXVALUE is reached.

The sequence default values are usually good enough. The most common option

that SQL developers change is the CACHE value. The default value of 20 is usually fine.

Similar to bulk collect, pre-fetch, and other batch size options, there is little benefit to

setting large values. Batch sizes are discussed in more detail in Chapter 16.

Chapter 9 Improve the Database wIth aDvanCeD oraCle sChema objeCts

254

 Synonyms
Synonyms are useful for creating aliases for schema objects. A layer of synonyms can hide

ugly environmental differences that we don’t want users or developers to worry about.

For example, the data set in this book can be installed on any schema. The data set

installation instructions include steps for creating a user named SPACE. Imagine we’re

building an application on top of our data set, but the name SPACE is already taken on

one database. The schema name will be different across environments. Our application

could hide that difference with a synonym:

--Create synonym example.

create synonym launch for space.launch;

Another use for synonyms is for loading data and minimizing downtime. We can

have two tables, or materialized views, with a synonym pointing to one of them. When

new data arrives, we load the data into the unused table. When the loading is complete,

we CREATE OR REPLACE SYNONYM to switch the synonym to point to the new data. That

approach is not as robust as online table redefinition but it’s simpler.

Similar to views, we should minimize our layers of indirection and avoid creating

synonyms that refer to synonyms. We should also avoid creating PUBLIC synonyms.

Public synonyms don’t grant access to all users, but public synonyms do pollute the

name space.

 Materialized Views
A materialized view stores the results of a query. Materialized views are mainly intended

to improve the performance of data warehouses, but can also enforce multi-table

constraints. This section only briefly discusses materialized view topics; for more

detailed information, there are a couple hundred pages about materialized views in the

Data Warehousing Guide.

Materialized views share all the properties of tables, along with a query and

directions for how to rebuild the materialized view. Materialized views can have indexes

and can be built off of other materialized views. Refreshing materialized views can be

done on demand, as part of a schedule, or automatically after a relevant statement or

commit. The refresh can either be COMPLETE, where the entire table is rebuilt, or FAST,

where only the necessary parts of the table are rebuilt. The package DBMS_MVIEW can

Chapter 9 Improve the Database wIth aDvanCeD oraCle sChema objeCts

255

help with refreshing a set of materialized views. The DBMS_MVIEW.REFRESH procedure

has many options for refreshing, such as degree of parallelism, atomic (refresh all

materialized views in one transaction), out of place (build a separate table and then

swap out the old data), etc.

Materialized views are complex and should only be used after we have exhausted

all other query tuning options. Materialized views can solve difficult performance

problems, but at the cost of extra complexity, extra space, and extra time spent

refreshing.

 Materialized Views for Multi-table Constraints
Outside of a data warehouse, materialized views can be useful for enforcing multi-table

constraints. For example, let’s try to enforce a rule across the SATELLITE and LAUNCH

tables. Both tables have an important date column; launches have LAUNCH_DATE and

satellites have ORBIT_EPOCH_DATE. Those dates are related but not always the same.

Satellite orbits will change over time, such as when orbits decay due to atmospheric

drag. The column ORBIT_EPOCH_DATE is the date when the orbital information was last

obtained.

ORBIT_EPOCH_DATE is often later than the launch date, since the orbit changes after

the launch. But it doesn’t make sense for the orbit epoch date to be before the launch

date. If Oracle had assertions, perhaps this statement could keep our data correct:

--LAUNCH.LAUNCH_DATE must be before SATELLITE.EPOCH_DATE.

--(Use "-1" because there are small deviations in times.)

create assertion launch_before_epoch_date as check

(

 select *

 from satellite

 join launch

 on satellite.launch_id = launch.launch_id

 where launch.launch_date - 1 < orbit_epoch_date

);

Unfortunately, the preceding feature does not exist yet. Most SQL developers would

recreate that rule using triggers, which requires procedural code that is difficult to make

both correct and fast. We can solve the problem declaratively using materialized views.

Chapter 9 Improve the Database wIth aDvanCeD oraCle sChema objeCts

256

First, we must create materialized view logs on the relevant tables. Every time the

table is changed, that change is also automatically written to the materialized view log.

With that change information, our materialized view can quickly determine which rows

to examine, so Oracle only has to compare changed rows, not the entire table.

--Create materialized view logs on base tables.

create materialized view log on satellite with rowid;

create materialized view log on launch with rowid;

Next, we create a FAST ON COMMIT materialized view that will list the rows we don’t

want to see. The following code flips the date comparison and has a few other odd

changes. The view includes the ROWID from both tables and uses the old-fashioned join

syntax instead of the ANSI join syntax. Fast refresh materialized views have many strange

restrictions and can be difficult to create.

--Materialized view for the condition we don't want to happen.

create materialized view satellite_bad_epoch_mv

refresh fast on commit as

select satellite.orbit_epoch_date, launch.launch_date,

 satellite.rowid satellite_rowid,

 launch.rowid launch_rowid

from satellite, launch

where satellite.launch_id = launch.launch_id

 and orbit_epoch_date < launch.launch_date - 1;

(If you are using tables from another schema, you will need to grant CREATE TABLE

directly to that schema, or else the preceding statement will fail with “ORA-01031:

insufficient privileges.” Even though your user may have the ability to create a table,

when you create a materialized view the materialized view owner needs to create

another table in the background.)

The preceding materialized view will contain all the bad rows. Because of the

materialized view logs, the materialized view won’t have to re-read the entire LAUNCH and

SATELLITE tables to validate changes.

The last piece of the puzzle is to add a constraint. This materialized view shouldn’t

have any rows, so we create a constraint that will fail if anything exists. But since there

are a few preexisting bad rows, we will create the constraint with the NOVALIDATE option.

Chapter 9 Improve the Database wIth aDvanCeD oraCle sChema objeCts

257

--Add constraint that prevents new rows.

alter table satellite_bad_epoch_mv add constraint

 satellite_bad_epoch_mv_no_row check (launch_rowid is null)

 enable novalidate;

Finally, let’s try to make a bad update. Let’s set an orbit epoch date to a value much

earlier than the launch date. The following UPDATE will run, but the COMMIT statement

initiates a series of events that end with the error “ORA-02290: check constraint

(SPACE.SATELLITE_BAD_EPOCH_MV_NO_ROW) violated.” The COMMIT causes the

materialized view to try to refresh. The materialized view reads the changed rows from

the materialized view log and tries to build the results for our query that should not

return any rows. When the query does return rows, the materialized view violates the

constraint, causing an error.

--Set a bad value.

update satellite

set orbit_epoch_date = orbit_epoch_date - 100

where norad_id = '000001';

commit;

Materialized view assertions are useful for enforcing complex data rules but there

are several disadvantages. Each imitation assertion requires several new objects. The

logic behind the materialized view is backward – we have to write a query for what we

don’t want. That query must adhere to several odd and poorly documented syntax rules.

And DML on the base tables will have a performance penalty, because all changes also

need to be written to the materialized view logs. This was a lot of painful code to create a

simple constraint, but the effort is worth it to maintain the integrity of our data.

 Database Links
Database links are the easiest way to access data on another database. With a few extra

keywords, and a few tricks, we can build large, powerful inter-database systems.

Creating a database link is simple and only requires basic connection information.

If we don’t have access to multiple databases, we can create a database link that refers to

itself, for testing. After we create a database link, remote objects are as easy to access as

adding the “@” symbol. Oracle automatically figures out the privileges, data types, etc.

Chapter 9 Improve the Database wIth aDvanCeD oraCle sChema objeCts

258

--Create a database link to the same database, for testing.

create database link myself

connect to my_user_name

identified by "my_password"

using '(description=(address=(protocol=tcp)(host=localhost)

(port=1521))(connect_data=(server=dedicated)(sid=orcl)))';

select * from dual@myself;

DUMMY

X

(The preceding commands will not work if you have the CURRENT_SCHEMA set to a

different schema. Database links can only be directly created in your own schema.)

Database links have some odd behaviors but there is almost always a workaround

to our problems. Database links are not made for importing or exporting huge amounts

of data. If we want to move gigabytes of data, we should look into tools like data pump.

Until version 12.2, database links didn’t natively support reading LOBs, such as CLOB

and XMLType. (Oddly, the workaround in older versions is to write the data to a table first,

instead of reading directly from the database link.) The “@” syntax also does not natively

support DDL statements. The workaround for running DDL is to call DBMS_UTILITY.

EXEC_DDL_STATEMENT over a database link. Database links always generate a transaction,

even if the statement doesn’t include DML.

Too many organizations have rules prohibiting database links for security reasons.

There’s nothing wrong with database links, although there are certainly problems with

PUBLIC database links. We need to be very careful granting anything to public. But we

shouldn’t let a non-default option stop us from using the most convenient solution.

Organizations that outright ban all database links would be wise to heed AviD’s Rule

of Usability: security at the expense of usability comes at the expense of security. If we

block the easy, secure way, people will find an easy, insecure way. The worst security

violations I’ve ever seen happened because an organization didn’t allow database links.

With the right code and workarounds, database links can be used to help us query

and control a large environment from a single database.

Chapter 9 Improve the Database wIth aDvanCeD oraCle sChema objeCts

259

 PL/SQL Objects
There are many interesting PL/SQL objects, but unfortunately those objects are out

of the scope of this book. If you continue to learn more about Oracle SQL, you will

inevitably start to use PL/SQL, so I will quickly list the objects here. You can start using

PL/SQL with anonymous blocks and PL/SQL common table expressions. Eventually

you’ll want to start creating these PL/SQL schema objects:

 1. Function: Runs PL/SQL statements and returns a value. Used for

small lookups or data transformations.

 2. Procedure: Runs PL/SQL statements but does not return a value.

Used for small changes.

 3. Package specification and body: Encapsulates functions,

procedures, and variables. Used for creating programs.

 4. Trigger: PL/SQL statements that are fired when an event happens,

such as table changes or system events. Used for side effects of

changes, such as adding a primary key to a new row.

 5. Type specification and type body: Encapsulates functions,

procedures, and variables. Similar to packages, but meant to

be used to hold data. Used for custom collections in PL/SQL

programs, or for object-relational tables.

PL/SQL is both over-used and under-used. The language is over-used by

programmers who come from a more traditional programming background and want

to program procedurally. A PL/SQL program should not be used when a SQL statement

can do the same thing. The language is under-used by programmers who think databases

should only store data, not process data. While I won’t say Oracle is the best database,

I’m comfortable saying Oracle PL/SQL is the best database procedural language. Just a

little bit of PL/SQL can open up a lot of opportunities. The PL/SQL language is powerful

enough to solve almost any problem.

Chapter 9 Improve the Database wIth aDvanCeD oraCle sChema objeCts

260

 Other Schema Objects
This section briefly lists other, less important schema objects. Even this section is not a

complete list; there are still many more schema object types, although those objects are

likely not relevant to SQL development.

 1. Cluster: Physically stores multiple tables together. For example,

the LAUNCH and SATELLITE tables are frequently joined together. It

might help performance if the tables were pre-joined and stored

in a cluster. Clusters sound good in theory but are not used in

practice.

 2. Comment: Documents tables, columns, and views. Can be useful

since many IDEs read the comments and display them when we

query the data.

 3. Materialized zone map: Stores information about the min and

max values within a “zone.” Similar to partition pruning, a zone

map can be used to quickly eliminate large chunks of data from

full table scans. Unlike partitioning, zone maps are only metadata

and do not require re-designing tables.

 4. OLAP objects: Oracle has a full online analytical processing

option. OLAP technology has faded recently, and Oracle has

started to create more of the OLAP functionality as regular

database objects. This includes analytic views, attribute

dimensions, dimensions, and hierarchies.

 Global Objects
Global objects are not owned by a specific Oracle user. Global objects are easy to forget

because they are not directly owned by our applications. Our applications may depend

on these objects, but these objects will often not show up when we export schemas or

metadata. We need to remember these exceptions, or our applications may only get

partially installed.

Chapter 9 Improve the Database wIth aDvanCeD oraCle sChema objeCts

261

 1. Context: Custom namespace that contains global data for each

session. Can be set by a custom package and can be referenced by

the SYS_CONTEXT function. For example, the default USERENV has

many helpful values, such as SYS_CONTEXT('USERENV', 'HOST').

 2. Directory: Mapping between a name and a file system directory.

Oracle packages like UTL_FILE don’t directly reference file

system directories, only the Oracle directory object. This level of

indirection is useful because the file system directories frequently

change across environments and platforms.

 3. Profile: Sets limits for users. Oracle recommends to use the

Resource Manager instead, since it’s more powerful. But in

practice the Resource Manager is overly complicated and we rely

on profiles.

 4. Restore point: A name associated with a timestamp or System

Change Number (SCN). Useful for flashback operations.

 5. Role: A set of object and system privileges that can be granted to

other users and roles. To prevent duplication, we should always

grant to roles instead of directly to users.

 GRANT and REVOKE
The GRANT and REVOKE commands control database access. There are three things that

must be controlled: object privileges (access to tables, views, etc.), system privileges

(CREATE SESSION to logon, powerful privileges like SELECT ANY TABLE, etc.), and role

privileges (custom application roles, or powerful default roles like DBA, etc.).

Granted privileges are only point in time. There is unfortunately no way in Oracle to

give the user Alice eternal access to all objects owned by the user Bob. We can simplify

things by using the ALL PRIVILEGES option, but we still need to run the GRANT for every

relevant object in Bob’s schema. And if a new object is created in Bob’s schema, Alice will

not have access until we run another GRANT statement.

The tricky part of granting access is when grants get transitive: when X is granted to Y

and Y is granted to Z. Creating chains of grants is difficult. When we grant an object to a

user, that user cannot grant the object to someone else, unless they have the WITH ADMIN

Chapter 9 Improve the Database wIth aDvanCeD oraCle sChema objeCts

262

option. When we grant an object to a user, that user cannot create a view on top of that

object and then grant that view to others, unless they have the WITH GRANT option.

Tracking privileges is not trivial. There are three kinds of privileges, and three sets

of data dictionary views, such as DBA_TAB_PRIVS, DBA_SYS_PRIVS, and DBA_ROLE_PRIVS.

Since roles can be granted to roles, if we want to thoroughly list all the role privileges, we

need a recursive query. If we want to truly know which roles we have access to, we must

use a query like this:

--Roles granted directly or indirectly to the current user.

select *

from dba_role_privs

connect by prior granted_role = grantee

start with grantee = user

order by 1,2,3;

The queries get more complicated when looking for object and system privileges.

We must take the preceding query and use it as part of another query. The following

example finds all the system privileges granted to the current user.

--System privileges granted directly or indirectly to current user.

select *

from dba_sys_privs

where grantee = user

 or grantee in

 (

 select granted_role

 from dba_role_privs

 connect by prior granted_role = grantee

 start with grantee = user

)

order by 1,2,3;

Finding object privileges requires a query very similar to the preceding query, but

replace DBA_SYS_PRIVS with DBA_TAB_PRIVS. That view name is misleading – that view

contains privileges for all objects, not just for tables.

Chapter 9 Improve the Database wIth aDvanCeD oraCle sChema objeCts

263

 Summary
Our whirlwind tour of advanced features is complete. We know how to build sets, how

to apply advanced read and write features, and how to create objects with advanced

options. Oracle has many different schema and global objects. We don’t need to

memorize the syntax, but we do need to remember what our different options are.

When we start combining advanced features and try to get the best performance out of

Oracle, we need to look behind the curtain and see how Oracle works. The next chapter

completes our discussion of advanced features by introducing Oracle’s architecture.

Chapter 9 Improve the Database wIth aDvanCeD oraCle sChema objeCts

265
© Jon Heller 2019
J. Heller, Pro Oracle SQL Development, https://doi.org/10.1007/978-1-4842-4517-0_10

CHAPTER 10

Optimize the Database
with Oracle Architecture
SQL and the relational model are logical constructs built on top of our slow, physical

machines. Even E.F. Codd’s original paper warned that implementing the relational

model would run into physical limitations. The more advanced features we use, and

the more stress we put on the database, the more likely it is for Oracle’s abstractions to

fail. Oracle has put a lot of effort into making our SQL code atomic, consistent, isolated,

and durable. But no system can hide all of its implementation details, and we need to

understand Oracle internals in order to make things work efficiently.

This chapter is focused on practical architectural information that we need to know

for SQL development. Database administrators will need to learn much more about

Oracle’s architecture and should read all 654 pages of the Database Concepts manual.

Developers can get by with just skimming that manual or with the information in this

chapter.

 Redo
Oracle is designed to never lose our data, and redo is a central part of that design.

Redo is a description of the changes being made to the database. When we run a DML

statement, Oracle doesn’t synchronously modify the data files; writing directly to data

files would cause contention and performance issues. Instead, Oracle uses a process

that is faster but is more complex and uses more resources. Most modern databases do

something similar, but with a different name, such as write-ahead logging or transaction

logging.

266

 Redo in Theory
When data is changed, Oracle quickly writes the redo data into a redo log buffer, a

memory structure. Before a commit can finish, that redo log buffer must be flushed to

disk, into the online redo logs. The online redo logs are multiplexed files – losing one

copy will not lose our data. Once the data is safely written to multiple locations, Oracle

can finish the changes asynchronously. Background processes will copy the temporary

online redo log into a permanent archive log. Background processes will also read the

change data and eventually update the permanent data files.

The redo process feels like a lot of extra steps at first. But redo allows Oracle to batch

the changes and write them together, instead of updating data files one tiny change at

a time. And redo lets much of the work happen asynchronously while allowing Oracle

to maintain durability. If we pull the plug on the database server, nothing will get lost.

When the database restarts, Oracle can read from both the permanent data files and the

redo log files to reconstruct the state of the database.

 Redo in Practice
The redo architecture affects our SQL performance in several ways. DML is more

expensive than we might anticipate. When we make a change to a table, that change

must be written multiple times. Let’s recreate the LAUNCH table, change the new copy,

and measure the amount redo data generated. The following query uses the view

V$MYSTAT to measure redo generation.

--Cumulative redo generated by this session, in megabytes.

select to_char(round(value/1024/1024, 1), '999,990.0') mb

from v$mystat

join v$statname

 on v$mystat.statistic# = v$statname.statistic#

where v$statname.name = 'redo size';

To measure redo we must re-run the preceding query after each statement. But to

save space, the following examples do not reprint the statement each time. The following

code shows different commands and how much redo is generated by each one. The redo

sizes printed in the comments may not precisely match the values generated on your

database because of version differences, configuration differences, and rounding.

Chapter 10 Optimize the Database with OraCle arChiteCture

267

--Create an empty table. +0.0 megabytes.

create table launch_redo as

select * from launch where 1=0;

--Insert data. +7.0 megabytes.

insert into launch_redo select * from launch;

commit;

--Delete data. +24.6 megabytes.

delete from launch_redo;

--Rollback the delete. +21.5 megabytes.

rollback;

According to DBA_SEGMENTS, the LAUNCH table only uses 7 megabytes of space. Notice

how the preceding DELETE statement generates almost three times as much redo data

than the actual size of the data. Even the rollback is expensive.

If we want to avoid generating redo, we need to use different SQL commands. The

following code shows that a direct-path INSERT and a TRUNCATE statement both generate

very little redo. Unfortunately, there is no way to stop redo from being generated by

DELETE and UPDATE statements.

--Direct-path insert. +0.0 megabytes.

alter table launch_redo nologging;

insert /*+ append */ into launch_redo select * from launch;

commit;

--Truncate new table. +0.0 megabytes.

--truncate table launch_redo;

Notice how we’re measuring redo in bytes, not rows. For performance tuning, bytes

are often more meaningful than the number of rows. When we’re thinking about SQL

logic, the number of rows is more important. When we’re thinking about the physical

performance and impact of our SQL, the number of bytes is more important.

Redo generation can happen in unexpected places. DDL commands like TRUNCATE

don’t generate redo for the data, but they do generate a tiny amount of redo for changes

to the data dictionary. There’s a small chance you will see “+0.1” instead of “+0.0” for

some of the DDL examples. Also, redo is also generated by global temporary tables,

unless the new 12.1 parameter TEMP_UNDO_ENABLED is set to TRUE.

Chapter 10 Optimize the Database with OraCle arChiteCture

268

The problem with redo generation can be even worse than simply waiting for all

those bytes to get written to disk. If our system is in ARCHIVELOG mode, then those

online redo logs get saved again as archive log files. Eventually those archive logs may

be backed up to tape and deleted. Until something is done with those archive logs, they

use up more space. We may need a large amount of additional space for large changes to

store the archive logs until they can be removed.

Redo is useful for more than just recovery. LogMiner can use redo data to read

the changes and find the source of logical corruption. Data Guard uses redo data

for maintaining logical and physical standby databases. GoldenGate uses redo for

replication and synchronization with other databases.

 Undo and Multiversion Read Consistency
Undo data is used for rollback, flashback, and multiversion read consistency. Undo is

similar to redo: both represent changed data and both can cause performance problems.

But undo causes different kinds of problems and at different times.

 Undo for Rollback
Redo represents the new data and undo represents the old data. There are many times

when our SQL statements need to reference the old data. Even when we issue a DELETE

command, Oracle cannot simply remove all the data. The most obvious problem is –

what happens if we roll back the statement or transaction? When Oracle is halfway

through deleting a table, Oracle must be able to put everything back to the way it was.

Before data is changed, an old version of the data is saved in the undo tablespace.

While redo is stored on the file system, undo is stored inside the database. But to make

matters worse, undo also generates redo. The undo–redo combination may be necessary

if the database crashes during a rollback.

All this transaction logging data sounds ridiculous at first. Aside from the change

itself, Oracle saves multiple copies of the new data and multiple copies of the old data.

All those extra copies are why direct-path writes can be so important. Our processes

don’t always have enough time and resources to make so many extra copies.

At least undo tends to be less expensive than redo. We can measure undo similar to

the way we measured redo. The following query on V$MYSTAT is almost exactly the same

as before, simply change “redo size” to “undo change vector size”:

Chapter 10 Optimize the Database with OraCle arChiteCture

269

--Cumulative undo generated by this session, in megabytes.

select to_char(round(value/1024/1024, 1), '999,990.0') mb

from v$mystat

join v$statname

 on v$mystat.statistic# = v$statname.statistic#

where v$statname.name = 'undo change vector size';

Similar to calculating redo, we can use the output from the preceding query as a

baseline for measuring undo generation. Then we can determine the undo generated

by any statement by re-running the preceding query. If we re-run the previous test case,

but this time measure undo, we’ll find that the undo generated is less than the redo

generated.

--Create an empty table. +0.0 megabytes.

create table launch_undo as

select * from launch where 1=0;

--Insert data. +0.3 megabytes.

insert into launch_undo select * from launch;

commit;

--Delete data. +13.9 megabytes.

delete from launch_undo;

--Rollback the delete. +0.0 megabytes.

rollback;

--Direct-path insert. +0.0 megabytes.

alter table launch_undo nologging;

insert /*+ append */ into launch_undo select * from launch;

commit;

--Truncate new table. +0.1 megabytes.

--truncate table launch_undo;

Like with redo, creating the preceding empty table generates almost no undo data.

Inserting data is where the undo looks better than redo; neither conventional nor direct-

path INSERT statements generate significant undo data. Deleting does create a lot of

undo data, about twice as much data as the size of the table, but that undo is still less

than the redo size. Rollback uses the undo data, but doesn’t generate any undo data.

Chapter 10 Optimize the Database with OraCle arChiteCture

270

Another good thing about undo is that it ages out. There’s no such thing as undo

archive logs that need to be saved or backed up. The undo tablespace will eventually

clean itself out, based on the size of the tablespace, the parameter UNDO_RETENTION, and

system activity. But we may still need to allocate a lot of space for the undo tablespace,

depending on how big and slow our transactions are. If we get errors about not being

able to find undo segments, either from DML or flashback, we may need to either

increase the tablespace size or increase UNDO_RETENTION.

 Undo for Multiversion Consistency
Aside from the obvious use of undo for rollbacks, undo is also used to maintain

multiversion consistency. Undo is the mechanism Oracle uses to achieve the consistency

and isolation in ACID. (As opposed to databases that use the simpler mechanism of

locking entire objects, which causes horrible concurrency problems.)

Oracle uses a System Change Number (SCN) to identify the version of each row.

The SCN increases with every commit and can be queried through the pseudo-column

ORA_ROWSCN, as shown in the following example.

--System Change Number (SCN) example.

select norad_id, ora_rowscn

from satellite

order by norad_id

fetch first 3 rows only;

NORAD_ID ORA_ROWSCN

-------- ----------

000001 39300415

000002 39300415

000003 39300415

If we made a change to those rows, and committed the change, the ORA_ROWSCN

would increase. If we rewrote the query using flashback, for example, if we added the

expression AS OF TIMESTAMP SYSTIMESTAMP - INTERVAL '1' MINUTE after the table

name, we would see the old values and the old SCN. When we query a table, we may be

reading from other data structures; some table data may be in the table and some table

data may be in the undo tablespace.

Chapter 10 Optimize the Database with OraCle arChiteCture

271

We need to be careful about using the SCN for our own purposes, such as optimistic

locking. Despite the name, ORA_ROWSCN does not necessarily return the SCN for each

row. By default, Oracle records one SCN per block, and updating one row may change

the ORA_ROWSCN for other rows. If we want to track an SCN for each row, we can create

the table with ROWDEPENDENCIES enabled, which uses an extra 6 bytes in each row to

store the SCN.

But even with ROWDEPENDENCIES enabled, the ORA_ROWSCN pseudo-column is not

100% accurate and can appear to randomly change. Oracle’s internal use of the SCN

is accurate, but the external presentation of the SCN is imprecise. Before we use ORA_

ROWSCN to implement a locking mechanism, we should carefully read all the caveats

described in the relevant page of the SQL Language Reference.

Undo and SCN enable multiversion consistency because every row effectively has

a timestamp. While we were running the preceding query against the SATELLITE table,

imagine if another user changed the table and committed their transaction. Even if the

table is changed in the middle of our query, the query results will not include those

changes. Every query returns a consistent set of data, the data that existed as of the time

the query began. Imagine if another user changes the SATELLITE table before we started

our query, but the transaction is not committed. Our query results are isolated from that

session, and we don’t see uncommitted data from other transactions.

Every time Oracle reads from a table, it must compare each row’s SCN with the SCN

at the beginning of the query. If the row SCN is higher than the query SCN, that means

someone else recently changed the data, and Oracle must look in the undo tablespace

for an old copy of the data.

Oracle queries are always consistent and isolated. Although redo can be disabled,

there is no way to disable undo to get a “dirty read” in Oracle. Reading undo data is so

fast we rarely notice it happening anyway. And since the undo data is not stored with

the table data, we don’t have to worry about our tables running out of space, or about

periodically cleaning up that undo information.1 But there is a price to pay for Oracle’s

undo architecture.

Long-running SQL statements may fail with the error “ORA-01555: snapshot too old.”

That error means the table has changed since we started reading it, and the old versions

of the table data could not be found in the undo tablespace. We can avoid those errors

either by making the query run faster, increasing the timeout for undo data with the

1 In PostgreSQL the changes are stored within the tables. That approach has advantages but
requires tables be periodically “vacuumed” to reclaim space.

Chapter 10 Optimize the Database with OraCle arChiteCture

272

UNDO_RETENTION parameter, or increasing the space available to the undo tablespace.

The UNDO_RETENTION parameter is not a guarantee, Oracle will only keep undo data for

that long if there is space available.

While redo and archive logs need to be sized for to the largest possible DML, undo

needs to be sized for the longest possible SELECT.

 Storage Structures
SQL developers need to be aware of how data is stored. Even if we’re not responsible

for administering our databases and storage, Oracle’s storage architecture affects the

performance and locking of our SQL statements. And we may need to understand how

space is allocated, so we know how much space to request and how to not waste that

space.

The storage structures, ordered from smallest to largest, are column values, row

pieces, blocks, extents, segments, data files, tablespaces, and ASM or file systems. All

of the items in that list are logical storage structures that only exist inside the database,

except for data files which are physical storage structures that exist on the operating

system. Oracle has other physical storage structures, such as control files and parameter

files, but those structures are more important to DBAs than developers. Our list of

storage structures is not a perfect hierarchy, but it’s good enough to be helpful. The list is

shown in Figure 10-1.

Figure 10-1. Storage structure hierarchy

Chapter 10 Optimize the Database with OraCle arChiteCture

273

 Column Values
We’ve already encountered column values many times in this book. And we’ve seen how

we can use the DUMP function to view the internal representation of data. The simplest

data types, NUMBER, VARCHAR2, and DATE, are easy to understand and need no

further explanation. These data types should make up the vast majority of our columns.

The storage of large objects (LOBs), such as BLOB, CLOB, and BFILE, can get

quite complicated. BFILEs are pointers to binary files stored on the file system and are

managed by the operating system. BLOBs and CLOBs can be stored inline, where a value

less than 4000 bytes can be stored along with other data. BLOBs and CLOBs larger than

4000 bytes must be stored out-of-line, separate from the rest of the table data.

Each BLOB and CLOB column will have a separate segment to store large out-of-line

data. In some cases the vast majority of table data is stored in a LOB segment instead of

the table segment. LOB segments can make calculating the storage size tricky; for tables

with large LOBs we cannot simply look for the table name in DBA_SEGMENTS, we also have

to find the LOB segment using DBA_LOBS. LOBs also have many storage properties, such

as tablespace, compression, encryption, deduplication, logging, retention, etc. If we’re

storing a huge amount of data in LOBs, we need to think carefully about the settings for

each LOB column.

Out-of-line LOBs still store a small amount of data in the table segment. Each LOB

value has a locator that points to the LOB. An index is automatically created for each

LOB to help quickly look up LOB data. Those LOB indexes are given system names like

SYS_IL0000268678C00010$$ and we should not try to directly modify those indexes.

Non-atomic types, such as XMLType and object types, are more complicated. But

even these complicated types are still stored in regular columns and rows behind the

scenes. Data dictionary tables like DBA_NESTED_TABLES and DBA_TAB_COLS2 show that

the fancy types are stored the same way as the regular types. No matter what we do, our

data is stored as columns and rows, so we shouldn’t expect any magical performance

improvements by using advanced types.

2 DBA_TAB_COLS shows the system-generated columns, whereas the data dictionary view DBA_
TAB_COLUMNS only shows the user-friendly columns.

Chapter 10 Optimize the Database with OraCle arChiteCture

274

 Row Pieces
As we would expect from a relational database, all values are stored in columns, and

the columns are stored in rows. These rows may be broken into multiple row pieces and

scattered across multiple blocks (which are discussed next). Everything in Oracle must

fit inside a block, which is usually 8 kilobytes. That size limitation means that new, large

rows must be broken into multiple pieces, called row chaining. If we update a row and

the row suddenly grows too large for the block, the entire row may migrate to another

block. In rare cases, row chaining and row migration can lead to performance problems.

Chaining and migrating rows requires creating extra pointers to the row pieces or new

location, which can lead to extra reads.

Every row can be identified by a ROWID pseudo-column, which is like a physical

address for each row. The ROWID is the fastest way to look up a row, even faster than a

primary key. But the ROWID can change, for example, if we compress or rebuild a table.

We should not permanently store a ROWID value and expect the value to work later.

The way column data is stored within a row can have important implications for

our table design. For each row, Oracle stores the number of columns. For each column,

Oracle stores a byte size and then the data. (There is other row metadata, but that’s not

important here.)

For example, let’s imagine three rows in the LAUNCH table, where LAUNCH_ID is the

only column with a value. That table has 14 columns, so almost all of the values in

those 3 rows are NULL. Let’s also imagine that we chose to put the LAUNCH_ID as the last

column. Each row starts with the number of columns, 14. Then there are 13 zeroes, for

the null columns that have 0 bytes. Then there is a 1, the size of the last column, which

only takes 1 byte. Finally there are the LAUNCH_ID values themselves, which are simple

integers. The first 3 rows may look like this:

14|000000000000011

14|000000000000012

14|000000000000013

Oracle uses a simple trick to save space with trailing NULLs. If we have the LAUNCH_

ID at the beginning of the table, and every other value is NULL, the number of columns

will be set to only 1. For the first column, the size is set to 1 byte, and then the data is

included. For the rest of the columns, nothing is needed. Oracle infers that if only 1 out

of the 14 columns is included, the rest must be NULL.

Chapter 10 Optimize the Database with OraCle arChiteCture

275

1|11

1|12

1|13

That trailing-NULL trick can save a significant amount of space for wide, sparse

tables. But the trick only saves space if the nullable columns are put at the end of the

table. We don’t normally need to know this kind of information. But if we’re going to

build something extreme, like a table with a thousand columns, working with Oracle’s

physical architecture can make a big difference.

 Blocks and Row-Level Locking
All columns and rows must fit inside blocks. A block is the atomic unit of Oracle read

operations. Although we may only care about a single row, data is always read at least

one block at a time. The default size of blocks is 8 kilobytes. Even if we only want 1 byte

of data, Oracle will always read at least 8 kilobytes. (The operating system and storage

device may read and write larger chunks at a time as well.) Blocks can impact the

performance and behavior of our database in several ways.

Basic table compression is done per block. Each block contains metadata about

common values, and the block can save space by not repeating those common values.

If the same value is repeated, but not within 8 kilobytes of the previous value, the value

won’t be compressed. But if the table is ordered by a column, repetitive values will

show up next to each other and the compression ratio will improve. We can make our

compressed tables significantly smaller if our INSERT statement also have an ORDER BY.

The block size is configurable but we shouldn’t change it. There are many myths

surrounding block sizes. I’ve never seen a reproducible test case demonstrating

performance improvements from block size changes. But I have seen plenty of systems

with a confusing mix of block sizes and incorrectly set parameters. Changing the block size

won’t help with large reads anyway; Oracle will adjust the DB_FILE_MULTIBLOCK_READ_

COUNT parameter to never exceed the operating system maximum. Unless you’re willing to

spend a huge amount of time researching and testing, don’t use a custom block size.

The PCTFREE parameter controls how much free space is left in new blocks and

defaults to 10%. It’s important to have a little bit of free space, to prevent row migration.

If the blocks were completely full, adding a single byte would require moving the entire

row. If the table is read-only, and rows will never move, then changing PCTFREE to 0 can

save space.

Chapter 10 Optimize the Database with OraCle arChiteCture

276

Retrieving data in blocks explains why indexes don’t perform as well as we would

like. Our SQL statements may only select 1% of all rows, but if we’re unlucky 1% of all

rows could be spread across 100% of the table blocks. Oracle may have to read a large

percentage of the table to read a small percentage of rows. This problem is represented

by the clustering factor. Similar to compression, we can improve things by inserting data

into the table in a specific order. But if we have multiple indexes, we may only be able to

improve the clustering factor for a small number of them.

Oracle’s row-level locking is implemented inside blocks. Whenever a transaction

changes a row, that row is locked until the transaction is committed or rolled back. Only

one transaction can modify the same row at the same time. Locks are not stored in a

separate table – locking information is stored with the data blocks. Each block has an

Interested Transaction List (ITL) that records which transaction is modifying which row,

as well as a pointer to the relevant undo data.

This row-level locking architecture means there’s no easy way to find out which

rows are locked. Lock information is stored inside the tables; Oracle would have

to read the entire table to know which row is locked and who locked it. And Oracle

only stores the transaction that locked a row, not the specific statements. When we

encounter a locking problem, we should ask who is blocking our statement, not what

is blocking our statement. The following query is a simple way to find out who is

blocking our session:

--Who is blocking a session.

select final_blocking_session, v$session.*

from v$session

where final_blocking_session is not null

order by v$session.final_blocking_session;

Once we have found the blocking session, it’s simple to figure out who owns that

session, what they are doing, and how they locked the row. There are lots of complex

locking scenarios, hidden parameters, lock modes, and other details. But most of the

time, when our row is locked, it means somebody else is updating the row and maybe

forgot to commit their transaction.

Chapter 10 Optimize the Database with OraCle arChiteCture

277

 Extents
An extent is a collection of blocks that belong to the same segment. Oracle may modify

data one block at a time, but Oracle allocates new space one extent at a time. There are

two algorithms for deciding how many blocks to allocate per extent; let Oracle decide

with AUTO or we should choose a static size ourselves with UNIFORM.

We should use the default, AUTO, and not worry about this setting unless we have an

extreme case. For example, if we have thousands of tiny objects or partitions, we might

want to save space by creating a small uniform size. (Although if we have that many

objects we have other problems, and need to rethink our design.) There’s not much to

worry about for extents, as long as we don’t mess with extent settings when we create

tables and tablespaces.

 Segments
A segment is a collection of extents. A segment is the entire storage structure for one

logical object, although the definition of “object” can be a bit tricky. These objects are

most commonly tables and indexes but can also include clusters, materialized views,

LOBs, partitions and subpartitions, etc. Segments are usually the best storage structure

for answering questions about the size of objects.

It’s important to understand that a segment only applies to one logical object at

a time. Space allocated to one table segment cannot be used by another table. For

example, if we fill up a segment with a large table and then delete all the rows in that

table, the space in that segment still cannot be used by other tables. Unused space is

why the TRUNCATE command is so important. Every segment has a high-water mark, to

mark the largest amount of space used by that segment. The high-water mark is easy to

increase but needs a DDL command to shrink. The empty space in a segment is not truly

free space until we reset the high-water mark.

Segments are the most common way to measure the size of our data. Measuring

the amount of data in Oracle is surprisingly difficult. We don’t want to measure things

like the overhead in rows and blocks, or empty extents. And we have to remember to

measure LOBs separately. For most systems, using DBA_SEGMENTS.BYTES for the table

is good enough. If the system has large LOBs, we need to remember to use DBA_LOBS to

map the LOB columns to separate segments.

Chapter 10 Optimize the Database with OraCle arChiteCture

278

The recycle bin isn’t a separate storage structure, it’s just a list of segments that were

dropped but still exist. Segments with a name like BIN$ are in the recycle bin, until they

are removed or recovered. Oracle automatically removes the oldest objects from the

recycle bin based on “space pressure.” Space pressure occurs when the system is running

out of space. But it’s not clear what the criteria are; the old version of the manual was

ambiguous and the new version of the manual doesn’t discuss space pressure. To be

safe, we should purge objects when possible. Data objects can be dropped permanently

with the PURGE option, or we can use a command such as PURGE USER_RECYCLEBIN or

PURGE DBA_RECYCLEBIN.

Other non-permanent segment types include redo, undo, and temporary tablespace.

These segment types are discussed elsewhere in this chapter.

 Data Files
Data files are the physical storage structure for all data and are exactly what they sound

like: files on the operating system. Data files are not truly parents of segments; the

hierarchical model used in this chapter is not perfect. A large table segment could span

multiple data files. But in practice, data files tend to be much larger than segments.

Unfortunately, adding data files is something that SQL developers need to be aware

of. Adding data files is a database administration task, but it is frequently done wrong

and causes problems. The following is a simple example of adding a data file.

--Add data file.

alter tablespace my_tablespace add datafile 'C:\APP\...\FILE_X.DBF'

size 100m

autoextend on

next 100m

maxsize unlimited;

The first line of the preceding example is pure database administration. Finding the

tablespace name, the directory (or the ASM disk group), and the file name depends on

our system. It’s the last four lines that are important to us and worth a brief discussion.

There is no performance advantage to creating initially large data files, so starting with

SIZE 100M can save space, especially in large environments with many data files. We

almost always want to increase the size of the data files as our data grows, so AUTOEXTEND

ON is an easy choice. We want our data files to grow at a reasonable pace, and NEXT 100M

Chapter 10 Optimize the Database with OraCle arChiteCture

279

is a good size. We don’t want to set the next clause to 1 block and cause performance

problems extending the data file one block at a time. On the other hand, we don’t want

to set the clause too high and waste space. And we might as well use as much space as

possible, so set MAXSIZE UNLIMITED.

Another important decision is how many data files to add. As developers, we

are responsible for providing an initial estimate of the data size. But we also need to

recognize that our estimate will be wrong. If possible, we should try to set up rules for

how to grow the data files. A good rule is to always double the number of data files. If we

follow the preceding settings, adding extra data files is almost free. Doubling the number

of data files doesn’t hurt anything, and it provides lots of breathing room.

This data file discussion may feel irrelevant to the job of a SQL developer. But it’s

worth thinking about space growth ahead of time. Running out of space is the most

common reason for Oracle outages. Nothing is more frustrating than having terabytes of

space allocated, yet watching an application fail because one data file wasn’t set to grow

or watching the application repeatedly fail, because a DBA adds one data file at a time,

instead of doubling the number of data files.

There are other ways to ensure we don’t run out of space. For example, we can use

a single bigfile data file instead of multiple smallfiles. Once again, as SQL developers we

may not particularly care about these details. Whatever approach our DBAs choose, we

need to ensure that there is a system in place to not frequently run out of space.

Data files also have a high-water mark, and we may need to occasionally defragment

our data files. Defragging above the high-water mark is easy but it can be painful to

defrag below the high-water mark. If we clean up a lot of objects, but are still wasting

space on large data files, we need to talk to our DBAs. But don’t be surprised if our DBAs

tell us we can’t reclaim the space.

 Tablespaces
Tablespaces are logical collections of segments and have one or more data files.

Tablespaces are used to group together storage, typically for an application or specific

type of data.

Every object with permanent data can be assigned to a different tablespace. But we

don’t want to have to worry about the tablespace for every table. The simplest way to

manage storage is to create one tablespace per user, and let every object in that schema

use the default tablespace. Managing the database is easier with fewer tablespaces.

Chapter 10 Optimize the Database with OraCle arChiteCture

280

The more tablespaces we have, the more likely one of our tablespaces will run out of

space and break things. On the other hand, we don’t want to use only one tablespace; a

runaway application could fill up the tablespace and break the entire database.

Many utilities and features can work per tablespace, such as data pump import and

export, backup, and transportable tablespaces. Transportable tablespaces let us copy

and paste data files between servers, to quickly move data. If we have a set of large tables

that we want to frequently copy, it may help to isolate those tables in a tablespace.

Oracle comes with the default tablespaces SYSTEM, SYSAUX, USERS, UNDOTBS1,

and TEMP. The SYSTEM and SYSAUX tablespaces are for system-generated objects,

and we should avoid storing anything in these tablespaces. When a tablespace is full,

the application that writes to that tablespace is going to break; if SYSTEM or SYSAUX is

full, the entire database breaks. The USERS tablespace is helpful for ad hoc users, but

shouldn’t be shared with applications. UNDOTBS1 unsurprisingly holds undo data, as

described earlier in this chapter. The TEMP tablespace will be discussed later in this

chapter.

 Automatic Storage Management
Automatic Storage Management (ASM) is an Oracle tool to manage file systems inside

a database, instead of using the operating system. SQL and administrative commands

can reference a single disk group name instead of using operating system directories

and files. Oracle can take care of things like striping, mirroring, file locations, etc.

ASM can help with performance and reliability and can enable technologies like Real

Application Clusters (RAC). ASM mostly affects administrators, but it may also impact

SQL development in minor ways.

ASM has a huge foot print – it requires another database installation and instance. If

we’re setting up a personal sandbox, creating a separate ASM database is not worth the

trouble.

Although ASM is a separate database, we rarely need to directly connect to it. Our

regular databases automatically connect to the ASM instance. If we want to write queries

to find the space available, instead of looking at data files and the operating system, we

can look at data dictionary views such as V$ASM_DISKGROUP.

The ASM data dictionary views can cause duplicate results if we are aggregating from

multiple databases. Each database returns the ASM information for all the databases

connected to that ASM instance. If we want to query and aggregate data from all of our

Chapter 10 Optimize the Database with OraCle arChiteCture

281

ASM instances, we need to only query from one database per ASM instance. Depending

on how ASM is set up, those queries can be tricky. But usually there is one ASM database

per host or one ASM database per cluster.

 Wasted Space
There are many layers of storage structures, and each layer has wasted space. Some

layers have extra space for updates or growth, other layers may maintain space unless

they are resized. In addition, administrators have to pre-allocate extra space for future

growth and emergencies. Most organizations try to keep their space usage below a

certain threshold, such as 80%. And a lot of space may be used for supplementary data

structures such as indexes and materialized views. And we need space for the database

binaries, operating system files, trace files, data pump files, flat files, redo, archive logs,

undo, temporary tablespace, etc.

One way to avoid wasting so much space is to change from a simple storage

threshold rule to a storage forecast. Instead of adding space when ASM is 80% full, we

should only add space when an algorithm predicts we will run out in the near future.

As SQL developers, it’s tempting to ignore space problems and let the administrators

handle them. But SQL developers are well suited to create programs that track space and

predict future growth. (But this entire discussion may not apply to cloud environments

where getting extra space is simple.)

Before we calculate our environment’s ratio of allocated space to actual data, we

should prepare to be disappointed. At my current job, we have a 5-to-1 ratio; it takes

5 terabytes of SAN space to store 1 terabyte of data. That high ratio seems ridiculous

at first. But when we examine each storage layer individually, the extra space seems

unavoidable. Wasting a huge amount of space is just something we have to live with.

These eternal space problems mean we need to have an honest conversation with

our DBAs about storage management. We need to talk about the overhead and make

sure we’re not both multiplying the storage requirements by a fudge factor. We need to

be prepared to be disappointed and understand that storing X bytes of data requires

much more than X bytes of storage.

Chapter 10 Optimize the Database with OraCle arChiteCture

282

 Temporary Tablespace
Temporary tablespace is used for storing intermediate results for sorting, hashing,

and large object processing. We need to allocate enough space to support our SQL

statements, but we don’t want to over-allocate space that will never be used.

Oracle first tries to process everything in memory. The amount of memory allowed

for sorting depends on the parameter PGA_AGGREGATE_TARGET. Starting in version 12.1,

Oracle has a hard limit based on the parameter PGA_AGGREGATE_LIMIT. (Alternatively,

the amount of memory may depend on the parameter MEMORY_TARGET. But Oracle is

gradually moving away from automatic memory management, and that parameter is

increasingly unlikely to be relevant.) The memory for sorting and hashing may be shared

among many sessions, and we cannot perform all operations in memory. Temporary

tablespace is used when operations can’t fit in memory and must be written to disk.

The amount of space required to sort or hash data is roughly equal to the size of that

data. If we have to process large amounts of data in a single query, as is common in a

data warehouse, there’s no way all that data will fit in memory. We need to allocate as

much space as the largest objects that will be hashed or sorted at the same time.

It can be difficult to predict how much data needs to be hashed and sorted at the

same time. We might have to find a good value through trial and error. Trial and error

is a painful way to configure a system but Oracle provides features that can help us with

this task.

First, we can look at the data dictionary to check current and historical values. We

can look at DBA_SEGMENTS.BYTES for large objects that will be sorted and hashed. We

can check the column DBA_HIST_ACTIVE_SESS_HISTORY.TEMP_SPACE_ALLOCATED for

the temporary tablespace used in previous SQL statements. And we can check the view

V$TEMPSEG_USAGE for current usage.

When we start running our large workloads, we can enable resumable sessions.

A resumable session will become suspended when it runs out of space, instead of

immediately throwing an error. When the session is suspended, we can quickly add

space, and then the session will automatically continue processing. Resumable sessions

are enabled with the parameter RESUMABLE_TIMEOUT. We can monitor for suspended

sessions with the data dictionary view DBA_RESUMABLE. Database administrators can set

up alerts, with a program like Oracle Enterprise Manager, to get an email or text when a

session is suspended.

Chapter 10 Optimize the Database with OraCle arChiteCture

283

If all the temporary tablespace is full, nothing can be hashed or sorted, which

effectively breaks the database. To avoid that problem, we could create multiple

temporary tablespaces and assign them to different users or applications. With multiple

temporary tablespaces, a single runaway query won’t take down everything on the

database. On the other hand, the more we divide the temporary tablespace, the more

storage we will have sitting idle.

There are times when systems run out of temporary tablespace, but we do not want

to add more space. If we create an unintentional cross join, the SQL statement may need

a virtually infinite amount of space. If we blindly increase the temporary tablespace

whenever we get space alerts, we may end up wasting a lot of space to support a

statement that will never finish anyway. In practice, many of our temporary tablespaces

are over-sized and waste a lot of space. If we’re running out of space, and getting

desperate, we may want to look at shrinking our temporary tablespaces.

Once again, this book about SQL development is discussing database

administration. We don’t need to be experts in space administration, but we need to be

able to help administrators plan ahead, to keep our applications working. And we need

to know how to respond to emergencies – administrators will not always know if a query

is intentionally large or just a mistake.

 Memory
Oracle’s memory architecture is complex and is difficult to configure and measure. As

SQL developers, we don’t need a thorough understanding of Oracle memory structures.

But a simple understanding of Oracle’s memory architecture can help us become

familiar with the basic memory trade-offs, so we can choose the correct strategies for our

programs.

One of the first memory-related decisions is the server architecture. Oracle defaults

to a dedicated server architecture, where each connection has a separate process with its

own memory. As always, we should stick with the default settings unless we have a good

reason to change. If we have a ridiculous number of connections, using a shared server

architecture may reduce memory. In a shared server architecture, multiple connections

can share memory structures. If our application reconnects for every SQL statement, or

has ten thousand active connections, the first course of action should be to change that

behavior. But if changing the application connection model is not an option, moving to a

shared server architecture is a good backup plan.

Chapter 10 Optimize the Database with OraCle arChiteCture

284

Oracle memory is divided into two main categories: System Global Area (SGA) and

Program Global Area (PGA). Oracle has an automatic memory management mode,

where we don’t have to choose between the two. Unfortunately, automatic memory

management is no longer effectively3 supported in 12.2, so we need to be familiar with

SGA and PGA.

Oracle will only use the memory we configure it to use. I’ve seen plenty of servers

with hundreds of gigabytes of memory, yet the installed databases were only configured

to use a few gigabytes. Even if system configuration is not our job, we may want to

occasionally check parameters like SGA_TARGET and PGA_AGGREGATE_TARGET and ensure

we are sufficiently using our resources. If we want a quick estimate about whether

adding memory will help, we should look at the views V$PGA_TARGET_ADVICE and V$SGA_

TARGET_ADVICE.

The SGA contains memory components that are shared between connections. The

SGA mostly contains the buffer cache, which most importantly stores blocks of data and

indexes.

The PGA contains memory components that are private to each session. The PGA

mostly contains space for sorting, hashing, and session variables.

For an OLTP system, with many small queries that constantly read from the same

tables and indexes, the SGA is most important. For a data warehouse system, with large

queries that sort huge amounts of data, and the tables won’t fit in memory anyway, the

PGA is most important.

Getting the memory settings correct is tricky, but we shouldn’t worry too much

about memory. We’ve all heard that memory access is 100,000 times faster than hard

drive access, but that ratio is not always applicable. First of all, that large number is for

random access, but disk drives are much more competitive for sequential throughput.

Also, we can’t do everything in memory anyway. Data must be frequently written to disk

or we lose durability. And with Oracle’s asynchronous I/O, much of that writing can be

batched and run in the background. We should not blindly add memory when we run

into performance problems.

3 Starting with 12.2, automatic memory management is not available for machines with more than
4 gigabytes of physical memory.

Chapter 10 Optimize the Database with OraCle arChiteCture

285

 Caches
Oracle has many ways to cache data and results, in high-speed memory structures.

Before we buy a separate, expensive caching solution, we should make sure we’re taking

advantage of the Oracle features we’re already paying for. The previous section described

the high-level memory system. This section describes more granular caching options.

The following is a list of the different types of caches in Oracle.

 1. Buffer cache (SGA): The largest and most important cache; it

stores blocks of tables, indexes, and other objects. The buffer

cache does not store the actual results of queries, which are

frequently different and become invalidated. By storing blocks, the

SGA caches data that can be used many times by many processes.

Data is aged out based on a least recently used algorithm. We can

use the buffer cache hit ratio to find the efficiency of our buffer

cache.

--Buffer cache hit ratio.

select 1 - (physical_reads / (consistent_gets + db_block_gets))

ratio

from (select name, value from v$sysstat)

pivot

(

 sum(value)

 for (name) in

 (

 'physical reads cache' physical_reads,

 'consistent gets from cache' consistent_gets,

 'db block gets from cache' db_block_gets

)

);

RATIO

0.982515222127574

Chapter 10 Optimize the Database with OraCle arChiteCture

286

 2. Shared pool (SGA): Multiple caches that contain parsed SQL

queries, stored procedures, data dictionary, etc. This cache is

important, but unlike the buffer cache we rarely need to adjust it.

The most common task for the shared pool is to flush it with the

command ALTER SYSTEM FLUSH SHARED_POOL, to force Oracle to

regenerate execution plans.

 3. Session memory (PGA): Contains session and program data,

such as package variables. With package variables, especially

collections, we can build our own caches if necessary.

 4. Client result cache: Caches statement results, instead of only the

data blocks. A cached statement is much faster than processing

a statement using cached blocks. On the other hand, caching

statements only helps if the exact same statement is executed

multiple times. This feature requires configuring the server, client,

and statement or table.

 5. In-memory option (SGA): An extra-cost option to cache data in

a special columnar format. This option can significantly improve

queries on specific columns but requires lots of extra memory and

configuration.

 6. SQL result cache (SGA): Caches the results of a specific SQL

query. This cache must be manually enabled with a /*+ RESULT_

CACHE */ hint.

 7. PL/SQL function result cache (SGA): Caches the results of a

function. This cache also must be manually enabled, by adding

the keyword RESULT_CACHE to function definitions.

 8. Scalar subquery caching (PGA): Scalar subqueries may be

automatically cached, dramatically improving query performance.

For example, SELECT (SELECT COUNT(*) FROM LARGE_TABLE)

FROM ANOTHER_LARGE_TABLE is a poorly written query, but it may

run much faster than we’d expect.

Whenever we find Oracle repeating the same, slow task, we should look for a cache

to reduce the run time.

Chapter 10 Optimize the Database with OraCle arChiteCture

287

 Database Types
There are many different types of Oracle databases. The vast majority of features

discussed in this book apply to any type of Oracle database. And this book is not

an administration guide that explains how to install and manage Oracle. But SQL

developers occasionally need to be aware of their underlying database type. The

following are different ways to categorize Oracle databases, and how they impact SQL

developers. These items aren’t simply different features, these are large architectural

changes that may affect the way we use our databases.

 1. Edition: A choice between Enterprise Edition, Standard Edition

2, Express Edition, Personal Edition, and cloud versions of those

choices. The features, and price, are wildly different between the

editions. (Some cloud platforms, like Amazon RDS, add so many

restrictions that they practically create their own custom edition.)

 2. Version: For SQL development, we only care about the first two

numbers. For example, developers don’t need to worry much

about the feature differences between 11.2.0.3 and 11.2.0.4.

(Although for DBAs there is a huge difference between 11.2.0.3

and 11.2.0.4. The latter version is a terminal release and is

supported much longer.) But developers do need to worry about

the feature differences between versions like 12.1 and 12.2.

 3. Platform: Oracle has excellent cross-platform support. It is

extremely rare to have to worry about the operating system when

writing SQL.

 4. Real Application Clusters (RAC): RAC is a shared-everything

solution, where every node contains the same information. The

shared-everything architecture makes it easier for developers,

because we don’t care which node we connect to. But we still

need to know if we are using a RAC system. At the very least, RAC

affects the way we connect to the database. For example, we may

want to use the scan listener for load balancing, but we want to

directly connect to a specific node when debugging. (Debugging

creates a background session, and debugging won’t work unless

both sessions connect to the same node.) We also need to know if

Chapter 10 Optimize the Database with OraCle arChiteCture

288

we’re on RAC so we can appropriately query the data dictionary.

For example, we need to use GV$ instead of V$ on RAC. RAC also

significantly affects parallelism, and we may need to adjust our

parallel strategies accordingly.

 5. Multitenant: Oracle’s multitenant architecture lets us have

multiple pluggable databases inside a single container database.

Unfortunately, this feature is not particularly useful unless we

license the extra multitenant option. The default multitenant

architecture is a marketing trick – multitenant features are not

very helpful if we can only use a single pluggable database per

container. Luckily, this architecture doesn’t affect our SQL code

much. We may need to read the data dictionary differently, or alter

the session to set the container, but otherwise our code should

work the same way. When installing Oracle, unless we’ve paid for

the extra multitenant license, we should select the non-container

architecture. On the other hand, Oracle will eventually drop

the traditional architecture, so it might help to prepare for the

multitenant architecture now.

 6. ASM: ASM is useful for management, but doesn’t affect our code

much. As previously described in this chapter, there are only a few

SQL command differences that depend on our ASM choice.

 7. Sharding: Oracle sharding was introduced in version 12.2 and

breaks away from the shared-everything architecture of RAC. Now

our systems can store different data on different databases. Unlike

with RAC, sharding may have a huge impact on our SQL code.

Not all of the items in the preceding list must match between all of our

environments. It doesn’t matter if our sandbox database matches production for the

platform, RAC, ASM, or multitenant. The vast majority of our database code will stay the

same regardless of those four items. The minor differences between the choices for those

four items can be abstracted relatively easily. And many of the differences don’t matter.

For example, we may want 99.999% uptime for our production databases, but it doesn’t

matter if our personal sandbox uptime is much worse.

Chapter 10 Optimize the Database with OraCle arChiteCture

289

But it is important to use the same edition, version, and sharding options. These

three choices may fundamentally alter our code. For example, some organizations use

Enterprise Edition in production and Express Edition for development. Mixing those

editions is a huge mistake. SQL developers will never be able to take full advantage of

Enterprise Edition features, if those features are not easily available for testing.

When it’s time to choose our options for new systems, we don’t want to over-

engineer it, and we don’t want to let Oracle Corporation upsell us. Oracle’s core database

technology is great, but a lot of their extra options are only good on the surface. When we

choose technology stacks, we must remember that the money we spend on extra licenses

may compete with our salaries. I’m in that situation right now; the architects on my

contract always selected the high-priced options, and inevitably our customer got sick

of the exorbitant costs and decided to migrate away from all Oracle products. Don’t set

yourself up for a similar failure.

 Summary
This chapter contains advice about times when SQL developers need to step up and

perform administrative work, even if that work is not in our job descriptions. There

is much overlap between developers and administrators, especially with the DevOps

movement. Instead of thinking of ourselves as just a developer, we need to care about the

end results, regardless of whose job it is.

Understanding Oracle’s architecture can help us improve our programs, work better

with other teams, and future-proof our code. Hopefully we can use our knowledge of

Oracle’s architecture to identify and prevent bottlenecks before they happen.

Chapter 10 Optimize the Database with OraCle arChiteCture

PART III

Write Elegant SQL with
Patterns and Styles

293
© Jon Heller 2019
J. Heller, Pro Oracle SQL Development, https://doi.org/10.1007/978-1-4842-4517-0_11

CHAPTER 11

Stop Coding and Start
Writing
Part I explained the importance of SQL and built a solid foundation for SQL

development. Part II discussed sets and advanced features needed to build powerful

SQL statements. We now have the motivation, efficient processes, and advanced

knowledge, but that is not enough. Part III discusses the styles and patterns needed to

write elegant SQL.

Why should we care about writing elegant SQL? There are many times when our

code quality doesn’t matter. Despite what we were promised about the re-usability of

software, in practice most of our code is only used once and then forgotten. For most

development, great is the enemy of good enough.

But the world is full of mediocre software. Developers should strive to occasionally

rise above our boring day-to-day code and write something amazing.

This book discusses “writing” SQL, not merely “programming” SQL, or “coding”

SQL. The word “write” is important because it helps us focus on the true audience of our

code. Our audience is not the end users; the end users are the audience of our programs

and don’t care about the source code. Our audience is not the compiler; the compiler

must verify and build our code, but the compiler doesn’t care if our code makes sense.

Our true audience is other developers.

The scarcest resource in the software life cycle is the attention of developers. Our

programming mantra should be “don’t make me think.” That phrase is the title of a

popular book about website usability. We can never make our source code as simple as a

website, but we want our code to be usable to other humans.

We must spend extra time upfront to make our code easier for developers later.

Making our code readable encourages other people to use our code and will even help

our future selves. Instead of programming cryptic statements, we should write easy-to-

follow stories. But making something look easy is hard.

294

Part III is a style guide and the most opinionated part of the book. I hope you strongly

disagree with some of my suggestions. Disagreement means you are paying attention

and you care about your code quality. If we disagree, we can still learn, as long as we can

justify our beliefs. Having any carefully considered style guide is better than having none.

Oracle SQL has a lot of historical baggage, and clinging to “that’s the way we’ve always

done it” isn’t good enough. If we don’t know both sides of an argument, then we don’t

know either side.

 The Hypocrisy of Examples
This book promotes one set of styles yet occasionally deviates from them. It’s difficult

to not be hypocritical when writing about programming styles, because writing and

programming are not exactly the same thing. It’s great to have a preferred coding style,

but we also need to be flexible and adapt to our context. We should cultivate an idealistic

style, but we should also have a pragmatic willingness to occasionally abandon our

ideals.

Writing about programming is a bit different than writing actual programs. For

example, tabs works great in an IDE but not in a book. Writing everything in upper

case looks silly, but upper case creates a helpful contrast when embedding code in a

paragraph. A long line of code may look fine in an IDE, but the code won’t look good in

blog post. It’s often helpful to include the table name in front of the column name, but

extra table names can take up too much space on a forum post. We must be willing to

occasionally ignore our own rules.

The problem with most SQL programming styles is that they only look good for small

examples. But we don’t need help writing code that is less than one line long. We need

help writing SQL statements that span more than a page. The large query in Chapter 6,

which shows the top rocket fuels used per year, is an example of when we need to start

applying helpful styles. The styles advocated in this book are meant to help with large

SQL statements, not trivial examples.

It’s good to program with a sense of idealism and beauty, but we should try to keep

the dogmatism out of it. After a while we should all evolve a sense of when code “just

looks right.” Eventually we’ll know that when our code looks right, it will run right. But

sometimes we need to ignore our feelings and stop insisting one style is always best. For

example, if we’re modifying existing code, we should imitate the existing style. It’s better

to be successful than to be right.

Chapter 11 Stop Coding and Start Writing

295

 Comments
We will never program in a natural language. Human languages are too complicated

and ambiguous to be accurately parsed and executed. Even laudable attempts to fuse

programming and natural languages, such as Donald Knuth’s literate programming,

have failed. Our programs are inevitably cryptic and complex. If we want to lower the

barrier of entry to our programs and enable more people to participate, we shouldn’t

make people think any more than necessary. We must use comments to make our

programs readable.

 Comment Styles
It’s debatable exactly where to place comments and how much to use them. I

recommend using enough comments so that someone can read our programs using only

the comments. For PL/SQL, we should add comments at the top-level objects, at the

definition of any function or procedure, in front of any large collection of statements, and

whenever we’re doing something unusual. For SQL, we should add a comment at the top

of every statement, the top of every inline view, and whenever we’re doing something

unusual. We don’t want to re-state everything in the comments, but we want to create

sign posts to help others quickly navigate our code.

Some people say “if it was hard to write, it should be hard to read.” I prefer the

aphorism “if you can’t explain it to a 6 year-old, you don’t understand it yourself.” I’m

not literally advocating we write for a 6-year-old. But we do need to spend extra effort to

distill the truths of our program and present those simple truths to readers who have not

seen our code before.

It’s difficult to know exactly who our audience is when we add comments. Are we

targeting specific coworkers who already know our business logic, developers familiar

with the programming language, our future selves, or someone else? There’s no easy

answer, but we still must spend at least a small amount of time trying to simplify our

comments. Our initial comments are too complex, because we all suffer from the curse

of knowledge. The curse of knowledge is a cognitive bias where we assume everyone

knows what we know.

Ideally we can use our comments as our documentation. Developers rarely want

to read large, out-of-date PDF files. Text files, simple HTML, and markdown files are

sufficient for documenting our non-commercial programs. The advantage of those

simple formats is they can be automatically generated. There are several programs that

Chapter 11 Stop Coding and Start Writing

296

can read specially formatted comments and turn those comments into documentation.

For example, the open source projects pldoc and plsql-md-doc. Many times we don’t

need separate documentation. It may be good enough to have a Readme.md file that

merely directs the reader to look at a package specification for details.

It’s difficult to say exactly what the content of our comments should be – it’s too

subjective. But one mistake we should avoid is we should not use comments to record a

history of all changes. Version control comments belong in the version control system.

Seeing a list of names, dates, and changes at the top of a file is a big red flag. That

metadata makes us wonder if the program was built with a version control system, which

is the same as wondering if the program was built competently.

 Comment Mechanics
There are two kinds of comments in SQL and PL/SQL. Single-line comments start with

--. Multiline comments start with /* and end with */. SQL*Plus also allows single-line

comments that start with either REM or REMARK. But we should ignore SQL*Plus-only

features when we have an equivalent feature that works in all SQL contexts. There is also

the COMMENT object that we can attach to tables and columns. Those COMMENT objects can

be useful, especially when IDEs automatically read the comments and display them in

the result grid.

Comments can also be used as hints, if the comments start with either --+ or /*+.

When we create a hint, we should also include a text comment in it. Hints are read left

to right and do not throw syntax errors. As long as we include our text after the real

comment, everything will work fine, like in the following code.

--Hint and comment example.

select /*+ cardinality(launch, 9999999) - I know this is a bad idea but...

Some people say that comments are an apology. Even if that statement is true,

when we’re programming we have a lot to apologize for. For example, the hint in the

preceding code is generally considered a “bad” hint. We’re lying to the optimizer, telling

the optimizer to pretend the table is much larger than its true size. There are better

approaches to tuning SQL statements, but we may have constraints preventing us from

using the best approach. In case those constraints change in the future, it helps to

explain why we’re doing something bad. It’s better to have a developer find bugs or faulty

assumptions through our comments than to have someone else discover the problem in

production.

Chapter 11 Stop Coding and Start Writing

297

There are a few limitations on Oracle comments we need to watch out for.

Comments cannot occur after a statement terminator. For example, the following code

does not work correctly in SQL*Plus or other contexts:

SQL> --Don't use a comment after a line terminator.

SQL> select * from dual; --This doesn't work.

 2

Multiline comments with two backslashes, and no spaces, can cause a problem in

SQL*Plus. The following SQL*Plus session looks confusing, because SQL*Plus gets easily

confused. SQL*Plus doesn’t have a full parser, and it incorrectly interprets the multiline

comment as requesting another execution of the SELECT statement. We could have

avoided the problem by using /* a */ instead of /*a*/.

SQL> --Example of bad comment.

SQL> select 1 from dual;

 1

 1

SQL> /*a*/

 1

 1

Multiline comments are useful for when we’re debugging or testing and want to quickly

remove a lot of code. For permanent comments it helps to stick with single-line comments.

Multiline comments cannot be embedded inside each other. Once we start using multiline

comments in permanent code, we cannot quickly comment out large blocks of code.

 Comment ASCII Art
We can make the most out of our text-only comments with ASCII art. We don’t want our

comments to look like goofy forum signatures, but there are times when we can benefit

by using something fancier than plain text. If there are critical variables we don’t want

developers to mindlessly modify, an extra-large “STOP” or “DANGER” can help. We don’t

have to hand-draw our own ASCII text, there are many ASCII text generators online.

Chapter 11 Stop Coding and Start Writing

298

To explain complex processes, it helps to create small flowcharts. There are also

several ASCII diagram tools readily available online.

We should focus the vast majority of our effort on writing plain text. But we must

recognize that programmers are going to skim through the program and not heed our

dire warnings. We can catch their eye with ASCII art like the following comment.

/***

 *

 * _______ _ +------------------+

 * |__ __| | | |doesn't have to be+-------+

 * | | _____ _| |_ +------------------+ |

 * | |/ _ \ \/ / __| |

 * | | __/> <| |_ +------+ |

 * |_|___/_/___| |boring+<------------------+

 * +------+

 *

***/

SQL is a real programming language and deserves useful comments. Always remember

that the audience for our code is not the computer, the audience is other humans.

 Choose Good Names
It’s important to choose good names for our databases, schemas, schema objects,

functions, procedures, variables, aliases, inline views, and all other programming

objects. Choosing good names isn’t just about creating aesthetically pleasing code. We

need to create logical, memorable chunks, to help make the most of people’s short-term

memory. When we’re writing source code, we’re at a significant disadvantage compared

to normal writing. Choosing names is one of the few things we have control over, so we

should spend extra effort picking the right name.

 Name Styles
As we gain experience, we build our own personal set of styles and rules for naming. The

specific rules don’t matter that much, as long as we are trying to achieve consistency,

simplicity, and flexibility. One common rule is to use nouns for things like packages

Chapter 11 Stop Coding and Start Writing

299

and tables and to use verbs for procedures and functions. Another example is to use

singular nouns for table names, instead of plural. Avoid single-letter variable names,

like “A” and “B”. On the other hand, “i” and “j” are common variables for looping. Avoid

abbreviations, unless the abbreviations are standard in our domain. Avoid names that

are listed in V$RESERVED_WORDS; those names may not work in all contexts, may not work

in future versions, and may confuse syntax highlighters and other programming tools.

Whatever we do, we should spend more than the bare-minimum amount of time to give

everything a proper name.

On the other hand, we don’t want to discuss every name in a team meeting, create a

spreadsheet of approved table names, or have a formal process to verify all new column

names. These three examples are not straw men – I’ve literally had to endure each of

those scenarios. Aside from being a bureaucratic nightmare, creating too much process

leads to worse table and column names. Nobody wanted to ask permission to use a new

column name, so we would pick the least-worst name. We should strive for good names,

but be pragmatic about it.

It can help to include values in our names. For example, if we use an analytic

function to find the first occurrence of something per year, we can name the column

FIRST_WHEN_1. When we want to limit the results to the first occurrence, the predicate

becomes obvious: FIRST_WHEN_1 = 1. We can do the same thing with small lists of

values, to make it clear what values can be included in the expression. Our names can

become tiny contracts, guaranteeing us we’re using the values correctly.

 Avoid Quoted Identifiers
We should avoid case-sensitive names with double quotes. Oracle identifiers normally

only allow alphanumeric characters, underscores, dollar signs, and pound signs. It might

feel liberating to get around those limitations using quoted identifiers, but it is a pain to

reference those quoted identifiers in SQL. Case-sensitive names break many of our data

dictionary queries and DDL generation programs. Some database objects and related

data dictionary views, like database links and DBA_DB_LINKS, don’t even support case-

sensitive names. And our SQL looks ugly when every name is surrounded by double

quotes.

In theory, quoted identifiers could save us a step. When we’re writing SQL for a

specific purpose, such as a form or report, we could use quoted identifiers to give

columns descriptive names. We could use the column name for both the identifier and

the description of the field.

Chapter 11 Stop Coding and Start Writing

300

In practice, those queries we use “just once,” for a single report, will eventually be

used for something else. Case-sensitive column names are like a virus that will infect all

our code. We should avoid case-sensitive names, such as in the following SQL statement.

--Avoid case sensitive column names.

select *

from

(

 select 1 "Good luck using this name!"

 from dual

)

where "Good luck using this name!" = 1;

 Name Length and Changes
If we’re using Oracle 12.2 and above, we should take advantage of the new 128 character

name limit. We certainly don’t want all our variable names to be that long, but there are

many times when 30 characters isn’t enough. If we’re still using version 12.1 or below,

we should check our code for any variables defined as VARCHAR2(30). We may want to

increase those limits to 128, to prepare for the new size limits.

Programs change over time and it’s important that we refactor our code and keep

the names up to date. Most IDEs have a simple refactor option, where we can right-click

variable names and change them in many places at once. If we set up a fully automated

build and test process, as described in Chapters 2 and 3, we shouldn’t be scared of

changing names. Changing schema object names is simple, as shown in the following

code.

--Change table and column names.

create table bad_table_name(bad_column_name number);

alter table bad_table_name

rename column bad_column_name to good_column_name;

rename bad_table_name to good_table_name;

If you’re still not convinced of the importance of good names, a few humbling code

reviews can be convincing. The best cure for the curse of knowledge is to watch someone

else look at our code and wonder out loud, “what does this mean?”

Chapter 11 Stop Coding and Start Writing

301

 Whitespace
Whitespace is one of the limited number of tools available to help us write better code.

Without as many formatting options as writing a document or email, we must rely on

whitespace to separate items and shift the reader’s gaze to what’s important.

Consider the way we use whitespace when writing. Whether we’re writing in a

programming language or in a natural language, there is a hierarchy of elements. For

example, this book starts with characters, which aggregate into words, sentences,

paragraphs, pages, chapters, parts, and finally the entire book. Each one of these

elements has an increasingly large amount of whitespace to separate them. We all

intuitively know that rule and follow it. But it’s worth explicitly stating that rule, because

we sometimes forget to apply it to certain elements.

In PL/SQL, the hierarchy is character, word, statement, and nested block. In SQL,

the hierarchy is character, word, expression or condition, clause, and nested query. Most

programmers and code formatters make a mistake at the top of the SQL hierarchy. Every

query, including every correlated subquery or inline view, is important and deserves lots

of space. As discussed in Chapter 6, inline views are the key to writing good SQL. Inline

views deserve lots of space, like in the following code.

--Give inline views lots of space.

select * from

(

 --Good comment here.

 select * from dual

) good_name;

--Don't cram everything together:

select * from (select * from dual);

The parentheses in the preceding example are like a BEGIN and END in PL/

SQL. Parentheses deserve their own line when they are used to separate inline views.

And, of course, everything inside the parentheses must be indented an additional level.

The indenting is critical to understanding the nested structure of our code. Giving lots of

space to inline views also makes them easier to highlight and run, which we will do often

for debugging.

Chapter 11 Stop Coding and Start Writing

302

Even if our inline views are small, they are still a high-level concept in the SQL

language. We shouldn’t cram inline views together to save space, unless the inline views

are trivial or unimportant. In the preceding code, both queries look fine, but the second,

compressed format does not scale well. For comparison, we would almost never put a

procedure all on one line, like in the following example.

--Typical way to format a procedure.

create or replace procedure proc1 is

begin

 null;

end;

/

--Weird way to format a procedure.

create or replace procedure proc1 is begin null; end;

/

Whitespace is not just important within a query, whitespace is also important

between queries, like in our SQL worksheets. The examples in this book and on the

GitHub repository follow this whitespace advice. Each chapter has its own file; each

heading is separated by three blank lines and a comment; each group of commands in

an example is separated by two blank lines; each command is separated by one blank

line. Worksheets are an important part of SQL development and we must all develop a

style to help us quickly navigate worksheets.

The exact number of lines and spaces doesn’t matter. What’s important is that we

have a consistent and easy-to-use system and that we use increasingly larger amounts of

whitespace for larger units of work. Even though our IDE provides a navigation pane, we

still need to make our worksheets, programs, and queries readable.

 Make Bugs Obvious
We can’t make bug-free programs. But we can write our programs in a way to make

bugs easier to find and fix. Code is inevitably cryptic but we should try to make it as

transparent as possible. Our goal is to make our code as clear and simple as the truth,

even if the truth is embarrassing. This section includes generic programming advice and

how to apply that advice in a SQL or PL/SQL context.

Chapter 11 Stop Coding and Start Writing

303

 Fail Fast
Failing fast is the most important technology concept in recent history. It is laughable

that we ever believed we could build something right on the first try. We need to tolerate,

and even encourage failures, to more rapidly create something that works.

The most important parts of failing fast are software engineering ideas like

automated testing, agile, building a minimum viable product, proper attitudes,

openness, etc. Some of these ideas are discussed in earlier chapters, but most of those

large topics are not in the scope of this book. The idea of failing fast, and being honest

about our mistakes and limitations, can percolate down to many of our small day-to-day

programming decisions. The next sections discuss specific ways to fail fast in SQL and

PL/SQL.

 Avoid Pokémon Exception Handling
Low-level failures in SQL or PL/SQL are exceptions. Exception handling is more of a

PL/SQL topic than a SQL topic. Unfortunately, we need to discuss exception handling

because it is frequently done wrong. When our exception handling is broken, we

don’t even know what SQL statement to debug. Most SQL developers, including

myself, will waste weeks of their lives trying to find the real line number and error

message.

The best way to handle exceptions in Oracle is to do nothing. By default, many

useful things happen when an exception occurs. The exception stops the current block,

propagates up through all the calling blocks, and crashes the entire program. The final

exception generates all the error codes and messages, along with all the relevant line

numbers and object names.

The default exception handling behavior provides enough information to

troubleshoot almost all of our problems. Our unnatural fear of failure leads to bad

practices that make failures harder to find and harder to diagnose.

For example, many PL/SQL programs catch and log all exceptions instead of

crashing the program. It’s great if our programs can catch and handle an exception. It’s

great if our programs can continue after an error. But we shouldn’t create an unrealistic

expectation that all programs can work through all exceptions.

Chapter 11 Stop Coding and Start Writing

304

Most SQL developers know that we should not catch and ignore all errors, like in the

following code:

--Example of bad exception handling that ignores all errors.

begin

 --Do something here...

 null;

exception

 when others then null;

end;

/

But many SQL programmers don’t realize that the following code is almost as bad.

The following code logs the error and continues processing.

--Example of potentially bad exception handling.

begin

 --Do something here...

 null;

exception

 when others then

 log_error;

end;

/

The preceding code should have at least re-raised the error. Or the code should not

have caught OTHERS in the first place.

In practice, those error logs are rarely checked. When something bad happens to our

programs, sometimes we need to admit defeat and crash the entire program. Crashing is

better than sweeping errors under the rug. It’s better to find the error immediately, when

the problem is fresh in our minds, than to investigate it later.

Custom logging functions almost always fail to log the entire call stack and all the

line numbers. If we build an error logging function, we must always use both DBMS_

UTILITY.FORMAT_ERROR_STACK and DBMS_UTILITY.FORMAT_ERROR_BACKTRACE. Or if we’re

using version 12.1, and we need to thoroughly investigate the call stack, we can use the

package UTL_CALL_STACK.

Chapter 11 Stop Coding and Start Writing

305

Printing only the last error, and only the last line number, may not show the

underlying problem. Sadly, most custom error logging only shows the location of the

exception handler, not the original error. If we build a custom error logging function, the

function must include at least as much information as when we do nothing at all.

Unless our programs are specifically handling an error or logging extra information

that only exists in one program scope, we only need to catch exceptions at the program

entry points. We shouldn’t add an exception handler to every procedure or every PL/

SQL block. We should take advantage of exception propagation.

Exceptions are not like Pokémon – we don’t want to catch them all.

 Use Bad Names and Weird Values
We often write bad code even though we know it’s bad. We know we shouldn’t hard-code

that value, or call that dangerous function, or depend on that unproven assumption.

But we write bad code anyway because we don’t have the time to make our programs

perfect. When we have to compromise quality, we instinctively want to hide what we’re

doing. We need to fight that instinct and do the exact opposite: make our bad decisions

obvious to anyone reading our code.

If we don’t know what we’re doing, we should say so in the comments. If we’re falsely

confident, programmers who know better than us might hesitate to change our code. By

making our ignorance clear, we’re inviting others to help us.

If we think our column or function is dangerous, put that uncertainty in the name.

We don’t want to drag other programmers down with our mistakes.

If we have to hard-code a non-real value, use a weird value that will stick out.

For example, with dates, choose an unrealistic date that obviously has no meaning.

The following example is painfully close to real code I’ve used several times.

--This works but I don't know why!

select date '9999-12-31' dangerous_last_date

from dual;

New programmers might feel nervous about admitting mistakes, but admitting

mistakes is much better than the alternative. Experts don’t fear bad programmers,

experts fear bad programmers who don’t know they’re bad programmers. We’re all

bad programmers in some contexts, so we all understand time constraints and being

confused by a program. Let’s be honest with each other.

Chapter 11 Stop Coding and Start Writing

306

 Use Fragile SQL
There is a difference between writing robust programs that can handle unexpected

problems and writing careless programs that suppress errors and encourage bad input.

We have been trained to avoid errors and exceptions in our SQL statements at all costs.

As discussed in a previous section, the simplest away to avoid that trap is to avoid code

like EXCEPTION WHEN OTHERS THEN NULL. In addition, there are several helpful SQL

constructs that shouldn’t be used to suppress useful errors.

Correlated subqueries that return more than one row generate the error “ORA-

01427: single-row subquery returns more than one row.” We may be conditioned to

always use IN instead of = to avoid that error. But if our data is only supposed to return

one row, we want to know when that assumption is wrong. For example, the DUAL table

should only contain one row. If that table contains multiple rows, we want to see an error

immediately. For example, in the following code, the IN operator is not protecting us, it’s

ignoring potentially serious problems.

-- "=" is better than "in" if there should only be one value.

select * from dual where 'X' in (select dummy from dual);

select * from dual where 'X' = (select dummy from dual);

Queries in PL/SQL code that return no rows generate the error “ORA-01403: no data

found.” Queries that return more than one row generate the error “ORA-01422: exact

fetch returns more than requested number of rows.” We can avoid those errors by using

an aggregation that always returns one, and only one, row. But like with the preceding

subquery problem, we don’t always want to hide our errors. If the DUAL table contains

no rows, then we want to generate a no data found exception, not hide it. The following

PL/SQL block shows that sometimes the simplest, most fragile code is best. If someone

messes with the DUAL table, which was possible in older versions, there’s no point in

trying to protect ourselves from the problem. Our system is going to break, we might as

well find out in the most straightforward way possible.

--Don't hide NO_DATA_FOUND errors.

declare

 v_dummy varchar2(1);

begin

 --This generates "ORA-01403: no data found".

 select dummy into v_dummy from dual where 1=0;

Chapter 11 Stop Coding and Start Writing

307

 --We might be tempted to avoid errors with aggregation.

 select max(dummy) into v_dummy from dual where 1=0;

 --But we want an error if this code fails.

 select dummy into v_dummy from dual;

end;

/

Outer joins are clearly necessary for our SQL statements. But we should not use an

outer join by default to avoid returning empty sets. If our program depends on both

tables having data, then we don’t want to hide it. The error generated by an empty set

may be more useful than returning a set with missing values.

When our SQL queries have made a mistake, an error is better than wrong results.

Exceptions are obvious and can be traced. Subtle, wrong results can linger for a long time

and cause unexpected problems that are hard to trace back to the source.

 The Path to Writing Good SQL
Writing good code, or writing anything well, takes a lot of work. While I certainly hope

this book helps you become a good SQL writer, this book is not enough. Parts I and II

gave you the processes and knowledge needed to write powerful SQL, and this chapter

introduces SQL writing styles and tips. Ultimately, the only way to be good at writing

something is to frequently practice. Just doing our daily work isn’t enough to master a

skill. To become good at writing SQL, we must deliberately practice it.

We need to find ways to get slightly out of our comfort zone and exercise our SQL

writing skills. There are many ways to practice with SQL. We can answer questions on

Stack Overflow, help people on forums, email useful tricks to our coworkers, present at a

team meeting, attend local user groups, peer reviews, etc.

Contributing to work and open source projects is important, but those contributions

won’t significantly improve our SQL writing skills. The trick is to find something with

a short feedback loop, so we can quickly learn what we’re doing wrong. We want to be

comfortable enough with the medium to participate, but not entirely comfortable with

our posts. The best way to learn something is to teach it to others, but teaching can be

intimidating.

Chapter 11 Stop Coding and Start Writing

308

 Summary
Creating elegant SQL statements requires more than rote knowledge of SQL syntax. We

need to think about our true audience – other human beings. Writing good SQL requires

efficient processes and technical knowledge. Writing great SQL requires extra effort to

tell a story in a limited format. This chapter introduced many tips and styles for telling

our stories in SQL. We should use comments to explain ourselves, use carefully selected

names, use whitespace to emphasize important code, and make our code honest to

make our bugs obvious.

It’s fine if you disagree with many of my specific suggestions; there are many

opinions, and there’s no one-size-fits-all style guide. We just need to ensure that our

programming style is not driven by a simple desire to make our code compile. Our

programming style must be driven by a desire to be understood by others.

Chapter 11 Stop Coding and Start Writing

309
© Jon Heller 2019
J. Heller, Pro Oracle SQL Development, https://doi.org/10.1007/978-1-4842-4517-0_12

CHAPTER 12

Write Large
SQL Statements
We must write large SQL statements to take full advantage of the power of Oracle

SQL. Large procedures are an anti-pattern in procedural programming languages;

we need to understand why SQL is different. Large SQL statements create several

risks and opportunities; we must be aware of the consequences of parsing, optimizer

transformations, resource consumption, context switches, and parallelism. Finally, we

need to learn how to read and debug large SQL statements.

 Imperative Programming Size Limits Do Not Apply
Not all of the rules we learned from imperative programming apply to declarative

SQL. One of the first things we learned from traditional programming is to keep each

statement, procedure, and function as small as possible.

Keeping each line and procedure small is great advice and should be followed for

our PL/SQL code. It’s best to build a procedure that only does one small thing. Keeping

procedures small minimizes unexpected side effects, makes code easier to understand,

simplifies debugging, etc. Likewise, each line of code should also be small, although

there’s no precise, objective definition for what is too big.

A SQL statement is arguably a single line of code. Consider the large example built

in Chapter 6 that shows the top rocket fuels used per year. That single line of code is

over 1,500 characters long. In a procedural context, that much code in one statement

would be a monstrosity. But in Oracle, that single statement is the best way to get the

information. A procedural version of that example would require more code, more

context, and more supporting objects.

310

The rules about procedure length apply to SQL, but not to the entire SQL statement.

In Oracle SQL, the declarative equivalent of a procedure is an inline view. It doesn’t

matter if our SQL statements are a hundred lines long, but it does matter if our inline

views are a hundred lines long.

 One Large SQL Statement vs. Multiple Small SQL
Statements
To demonstrate the advantages of one large SQL statement over multiple small

statements, ideally we would re-use the large example from Chapter 6. Unfortunately,

that example would take up too much space, so we’ll re-use a smaller example from

Chapter 7. The following is a SQL statement to find the first three satellites, based on

their launch date.

--SQL version of first 3 satellites.

select

 to_char(launch_date, 'YYYY-MM-DD') launch_date,

 official_name

from satellite

join launch

 on satellite.launch_id = launch.launch_id

order by launch_date, official_name

fetch first 3 rows only;

LAUNCH_DATE OFFICIAL_NAME

----------- -------------

1957-10-04 1-y ISZ

1957-10-04 8K71A M1-10

1957-11-03 2-y ISZ

That SQL statement is recreated below in an imperative language, using PL/SQL.

--Imperative version of first 3 satellites.

declare

 v_count number := 0;

begin

 for launches in

Chapter 12 Write Large SQL StatementS

311

 (

 select *

 from launch

 order by launch_date

) loop

 for satellites in

 (

 select *

 from satellite

 where satellite.launch_id = launches.launch_id

 order by official_name

) loop

 v_count := v_count + 1;

 if v_count <= 3 then

 dbms_output.put_line(

 to_char(launches.launch_date, 'YYYY-MM-DD') ||

 ' ' || satellites.official_name);

 elsif v_count > 3 then

 return;

 end if;

 end loop;

 end loop;

end;

/

The most obvious difference between the preceding two examples is the SQL version

is much smaller. This comparison is not criticizing PL/SQL. PL/SQL is a great language,

and PL/SQL almost perfectly integrates with SQL. Any imperative solution is going to be

much larger than the equivalent declarative SQL statement.

The imperative version of the code requires us to do much more work. We need

to define a variable and increment our own counter. We need to create our own loops

and iterate the results. We need to tie the two SQL statements together, using a value

from a higher scope. We need to think about which table is iterated first, LAUNCH or

SATELLITE – the order is important because we’re only getting the top 3. Debugging the

PL/SQL code requires stepping through the code and viewing variables one value at a

time, instead of viewing entire sets of data at once.

Chapter 12 Write Large SQL StatementS

312

As with any small example, we need to ask ourselves if the lessons we learn from

this example will apply to large, realistic SQL. In this case, the answer is a resounding

yes. If we think the preceding PL/SQL block is bad, it would be even worse for the large

Chapter 6 example. Gluing SQL statements together in PL/SQL isn’t rocket science, but

it’s much more complicated than passing data through joins or inline views. There are

multiple ways to split large queries into procedural pieces, but each way either requires

more code or more helper objects, like temporary tables.

However, the readability advantages of SQL disappear if we do not use inline views

and ANSI joins. If we throw all the tables together, with no discipline, the result will be

more confusing than the imperative alternative.

For many SQL developers the preceding PL/SQL version already looks bad. It’s

not too hard to spot a simple join done in PL/SQL. But the more advanced our SQL

knowledge and experience, the more frequently we’ll be able to identify procedural code

that can be replaced with declarative code. Every experienced SQL developer can tell

you stories about times they replaced a hundred lines of procedural code with a dozen

lines of SQL.

 Performance Risks of Large SQL Statements
Large Oracle SQL statements are a great way to simplify our code and increase

performance but they also introduce performance risks. When we start using advanced

features, we’re going to run into problems, but we should solve those problems

instead of giving up. We need to keep an eye out for problems with parsing, optimizer

transformations, and resource consumption.

 Large SQL Parsing Problems
The first problem with writing or generating large SQL statements is parse time. Every

SQL statement is a program that goes through many parsing steps – checking syntax,

checking privileges, optimizing, etc. Oracle effectively compiles a new program for each

statement, and compiling is traditionally slow. Luckily, Oracle’s SQL parsing is much

faster than traditional compilation. But there are still some edge cases with SQL parsing.

There is no theoretical limit to the size of a SQL statement. The Oracle database

server can easily handle megabytes of data in a SQL statement, although our clients and

programs may complain. The physical size of a query is not a problem, except in extreme

cases when we’re using SQL to store lots of data.

Chapter 12 Write Large SQL StatementS

313

SQL is a convenient format for storing data. We can store data by selecting constants

from DUAL and combining rows with UNION ALL. Compared to a CSV or JSON file, a SQL

statement is a bit larger and maybe a bit slower. But SQL has the huge advantage of not

needed any import tools or conversions, and the SQL can easily be plugged into many

contexts.

Problems start to happen when the number of rows concatenated by UNION ALL

or INSERT ALL approach several hundred. Old versions of Oracle had a bug where

concatenating 499 rows worked fine but concatenating 500 would take hours. The parse

time is much better in modern versions, but we should still avoid concatenating more

than 100 rows in a single statement. Part IV describes how combining 100 rows at a time

is good enough. Large SQL is useful, but ginormous SQL causes slow parse times.

Storing too many megabytes of data in a PL/SQL object can cause compilation errors

like “Error: PLS-00123: program too large (Diana nodes).” Those errors can be avoided

by using multiple objects. But at some point, when our imported data becomes large

enough, we need to look at other formats.

Common table expressions also have parse problems when they are nested more

than a few dozen levels deep. But that is an extremely unlikely scenario. I don’t want you

to learn the wrong lesson here. Batching operations is a great idea, we just need to be a

little cautious when using extreme sizes.

 Large SQL Increases Optimizer Risks
A common SQL performance problem is having two queries that run fast independently

but run slowly when combined. Our initial experience might lead us to believe us that

combining large inline views causes performance problems. Our first impression is

wrong, and we need to understand why these problems happen, how to fix the root

causes, and how to work around the problem.

The Oracle optimizer is discussed in more detail in Part IV. For now, all we need to

know is that Oracle does not have to execute our queries in the order we write them.

When we write SQL, we’re not asking Oracle to “run these commands,” we’re asking

Oracle to “get data where these conditions are true.” The optimizer can transform our

code into a different but logically equivalent version. The SQL statement actually run

by Oracle may look significantly different than the one we wrote. We need to provide

helpful information to the optimizer through accurate statistics, and we need to tune the

optimizer’s SQL, not our SQL.

Chapter 12 Write Large SQL StatementS

314

For example, when we join two inline views, Oracle does not necessarily execute

each inline view separately and then join them together. Oracle can rewrite the inline

views into a single query, move conditions from one inline view into the other, etc.

Those transformations are the reason why putting inline views together may lead

to better or worse performance. Combining queries gives Oracle more opportunities

to optimize and improve performance. But combining queries also creates more

opportunities to make a mistake and decrease performance.

For example, the following code is almost certainly not executed in the order it

appears. The predicate at the end of the SQL statement will be pushed into the inline

view. Pushing that predicate allows Oracle to use an index, which can quickly look up

the single row that matches the LAUNCH_ID. There’s no need for Oracle to read the whole

table first and then filter the results. These transformations are an important feature that

Oracle frequently uses to significantly improve performance.

--An inline view that should be transformed.

select *

from

(

 select *

 from launch

)

where launch_id = 1;

Optimizer transformations can go horribly wrong and cause performance problems.

Instead of simply turning off transformations, it’s best to understand why Oracle made

a bad transformation. Finding the root cause of a bad transformation is difficult, but the

root cause will reveal problems that affect other code. Part IV discusses transformations

and performance tuning in more detail.

In practice, we can’t get to the bottom of every performance issue. We may not

have time to look at execution plans, optimizer settings, statistics, etc. Or we may have

a monstrous execution plan, with hundreds of operations, and we don’t even know

where to begin. In rare cases, a SQL statement is simply too complex for the optimizer

to correctly estimate. Luckily, there’s a simple code trick to disable transformations and

force the optimizer to view one SQL statement as two separate statements.

When we know that two queries run fast independently, but slowly when run

together, we can disable all transformations between them. The best way to disable

Chapter 12 Write Large SQL StatementS

315

transformations, and force Oracle to execute things in a specific order, is to use ROWNUM.

The following example has a ROWNUM in the inline view, which prevents the LAUNCH_ID

predicate from being pushed inside.

--An inline view that cannot be transformed.

select *

from

(

 select *

 from launch

 --Prevent query transformations.

 where rownum >= 1

)

where launch_id = 1;

ROWNUM is a pseudo-column that is meant to be generated at the end of query

execution, to add a simple incrementing number to each row. Since ROWNUM is meant to

be used for the display order, Oracle will never transform an inline view that uses ROWNUM.

This simple trick ensures our inline views will run as if they were executed separately.

This ROWNUM trick is stupid, but it’s the least-worst option to a difficult problem. No

other fix works reliably. There are a combination of hints that can do the same thing, but

those hints are difficult to get right, and it’s easy to lose hints when queries are changed.

I don’t like using cryptic code that doesn’t solve the root problem and looks logically

redundant. But in practice this is an important trick worth remembering. This trick is

also used to fix type-conversion bugs, as described in Chapter 15.

 Large SQL Resource Consumption Problems
Batch processing with one large SQL statement is faster and more efficient than using

multiple small SQL statements. While a large SQL statement uses less cumulative

resources, that statement consumes more resources at a specific point in time. This

consumption can cause issues with CPU, I/O, locks, redo, temporary tablespace, and

most importantly, undo.

Most changes need to be written to the undo tablespace. The larger the DML

statement, the larger the amount of undo needed at one time. Multiple small changes

will generate more undo overall, but that undo can be flushed in between commits.

Chapter 12 Write Large SQL StatementS

316

In addition, a longer-running query also needs to access more undo data. If a query has

been running for an hour, the query may need to access undo data from an hour ago.

It’s better to size our systems to support large DML, but allocating enough resources

is not always feasible. There are times when we need to break statements into pieces, but

that should not be our default behavior.

 Performance Benefits of Large SQL Statements
Large SQL statements are more risky than small SQL statements when it comes to

performance. But no risk, no reward. There are enormous potential performance

benefits of using large SQL statements. Each of the risks and problems discussed in

the previous section must be measured against the improvements and opportunities

discussed in this section. If we follow the style suggestions in this chapter, we can

increase performance through improved clarity, optimizer opportunities, reduced I/O,

fewer context switches, and improved parallelism.

 Large SQL Improves Clarity
The key to SQL tuning is to understand the meaning of a SQL statement. Understanding

the SQL lets us rewrite the statement more efficiently and apply advanced features. We

should always start from understanding the query; don’t jump right to execution plans,

indexing, cryptic hints, etc. “Understand your business logic” is boring advice but that

doesn’t make it wrong.

Large SQL statements, when built with the proper features and styles, will be easier

to understand than the equivalent imperative programs. Writing good code invites

others to participate, creating as virtuous circle. Improving performance is a wonderful

side effect of writing clean code.

 Large SQL Increases Optimizer Opportunities
The more code and information we give to Oracle, the more opportunities the optimizer

has to do something clever. The optimizer builds SQL execution plans and only works on

one SQL statement at a time. Building large SQL statements gives the optimizer more to

work with.

Chapter 12 Write Large SQL StatementS

317

As previously discussed, the optimizer can push predicates into inline views and

potentially filter out rows before those rows are joined to something else. Instead of

pushing predicates down, Oracle can also pull joins up and can execute joins that

weren’t explicitly asked for. That transformation is called view merging.

For example, consider the following pseudo-query. The pseudo-code has two inline

views and then joins the views together.

--Pseudo-query using inline views.

select *

from

(

 ... a join b ...

) view1

join

(

 ... c join d ...

) view2

 on view1.something = view2.something;

The optimizer can merge these views into a statement like this:

--Pseudo-query caused by view merging.

select *

from a

join b ...

join c ...

join d ...

Oracle doesn’t have to join tables in the same order they are displayed. Oracle can

take advantage of transitive joins; if A joins to B and B joins to C, then Oracle can join A to

C instead. Perhaps tables A and B are large and unfiltered – joining them together takes

forever. And maybe table C is small and is filtered to only return one row – joining with

that table is fast. We can save a lot of work by rearranging joins through view merging,

re-ordering the joins, and many other optimizer transformations.

Chapter 12 Write Large SQL StatementS

318

 Large SQL Reduces Input/Output
Large SQL statements can help us dramatically decrease the amount of I/O generated.

Processes with intermediate steps have to save temporary data, often in a global

temporary table. Those temporary tables require writing data to disk and then later

reading the data from disk, whereas a single SQL statement may be able to keep

everything in memory and not need to write anything to disk.

When a SQL statement can’t process everything in memory, Oracle can automatically

use temporary tablespace. For example, when sorting or hashing data, Oracle needs

about as much space as the data being sorted or hashed. But there’s an important

difference between using temporary tables and temporary tablespace. Writing to tables,

even global temporary tables, also generates redo and undo. Writing to temporary

tablespace because of sorting and hashing does not generate any redo or undo.

 Large SQL Reduces Context Switches
Every transaction and every change from a procedural language to SQL incurs extra

overhead. With a large SQL statement, we only pay that price once. If we use a procedural

language to repetitively call a SQL statement, we pay a price for each SQL call. If we use a

PL/SQL function in our SQL statement, we pay a price for each function call.

There can be a huge amount of overhead for calling multiple SQL statements,

especially if that call involves a network round trip. Sending and receiving messages and

parsing the SQL may take longer than actually executing the SQL. Replacing row-by-row

solutions with set-based solutions can improve performance by orders of magnitude.

Even though SQL and PL/SQL are closely integrated, we still want to avoid too many

context switches between them. When we create user-defined functions in PL/SQL,

every call to those functions takes a small amount of time to change between languages.

In addition to the overhead, the PL/SQL function itself may take a long time.

The optimizer cannot accurately estimate the time to run procedural code. Without

a good estimate, the optimizer is more likely to make mistakes with PL/SQL functions

and may run the function too many times. We must pay special attention to the number

of times custom functions are executed. We can rewrite custom functions with built-in

SQL functions, use tricks like ROWNUM to ensure that functions are called less often, enable

function caching, or replace multiple function calls with a single table function that

returns a set of data.

Chapter 12 Write Large SQL StatementS

319

Oracle can take large pieces of declarative code and successfully merge them

together. But when we add procedural code to our SQL, we limit the optimizer and have

to do more of the work ourselves.

 Large SQL Improves Parallelism
Large SQL statements are the most efficient way to use parallelism. If we have enough

resources, we can improve program performance by orders of magnitude with parallel

processing. In traditional programming, building parallel solutions can be ridiculously

difficult. With SQL, parallel programming can be as easy as adding the hint /*+

PARALLEL */. We don’t have to tell Oracle how to build concurrent programs, Oracle

will do all the hard work for us.

Oracle can also take advantage of parallelism through single instruction multiple

data (SIMD) processing. Modern CPUs don’t just have many cores and many threads.

Each thread can process multiple values at the same time. Oracle can use SIMD for

in- memory operations on most modern processors. On a few processors, Oracle has

SQL- in- silicon features that can execute parts of SQL in hardware. It’s not clear exactly

how those features work, but chances are, the more data we process at once, the more

likely Oracle can use processor parallelism.

With parallel processing, bigger is always better. One statement processing a

ginormous amount of data is better than multiple statements processing large amounts

of data. A single statement only has to pay for process startup and shutdown once and

only has to worry about one set of partition granule skewing.

Every time Oracle uses parallel processing, it must create a lot of processes, allocate

memory, and then eventually deallocate those resources. Oracle divides the data into

partition granules and feeds the granules to the parallel processes. If the granule sizes are

skewed and if each parallel process is only given a small number of granules, that skew can

significantly impact performance. If one parallel server has more work than the others,

then all the processes have to wait on one thread. Even a small amount of serial overhead

can erase much of the benefits of parallelism and is discussed further in Chapter 16.

For example, let’s count the number of rows in a large, partitioned table. Many

programmers hesitate to read the entire table at once and prefer to process the table

one partition at a time. Figure 12-1 is the SQL Monitor Active Report, which shows the

activity generated by reading each partition in parallel. (See the GitHub repository for

the code to generate a similar example on your system.) Don’t worry about the details of

the image, just look at the shape.

Chapter 12 Write Large SQL StatementS

320

Notice the jagged edges at the top of the preceding image. Each SQL statement in

the process asked for a degree of parallelism of 16. Yet there are many times when the

number of active SQL sessions is less than 16. The code ran for 10 minutes, and if the

report could zoom in further, we would see many peaks and valleys.

Contrast Figure 12-1 with Figure 12-2, which shows the SQL Monitor Active Report

for counting the entire table with one statement. This image is more boring, but in this

case boring is good. Oracle is doing one thing, and doing it well – the average number

of active sessions is almost always 16. There’s almost no time wasted scaling up and

down the processes. The process runs faster when we give Oracle the entire job in one

statement and let Oracle decide how to divide the work.

Figure 12-1. Processing a large table in parallel, one partition at a time

Figure 12-2. Processing a large table in parallel in one statement

Chapter 12 Write Large SQL StatementS

321

 Reading and Debugging Large SQL Statements
The size and structure of SQL statements can be challenging initially. But with a good

style, an IDE, and practice, we can quickly dissect any code into readable chunks.

 Inside Out
It takes time and effort to get used to the way Oracle SQL executes starting from the

deepest inline view. This inside-out flow is different than the traditional top-to-bottom

flow every programmer is used to.

For example, let’s take another look at the code behind the large example in Chapter 6.

But this time we’re going to focus on the shape of the query, not the code. That query

found the top 3 rocket fuels used per year. The query was broken into six steps and used

inline views, joins, conditions, grouping, ordering, and analytic functions. If we strip

away the code and look only at the comments, these comments tell the story of the

query.

--Top 3 fuels used per year.

--

--#6: Select only the top N.

 --#5: Rank the fuel counts.

 --#4: Count of fuel used per year.

 --#1: Orbital and deep space launches.

 --#2: Launch Vehicle Engines

 --#3: Engine Fuels

I kind of cheated in the example, by adding numbered comments to each inline

view. Unless the code is particularly complicated, I don’t typically add numbers. In this

case the numbers are useful for teaching how to visualize the flow of inline views.

Without those numbers, indenting is the key to understanding the structure of the

code. We’re not using Python, we don’t have to indent, but it would be crazy not to.

Eventually we will be able to easily read those nested structures. It’s hard at first, but

we need to embrace the power of these recursive structures. We can’t realistically write

SQL code that only uses one subquery and flows top to bottom; we will end up with a

mess of spaghetti code if we join all the tables at once. Nor can we use common table

expressions to enforce a top-down structure. Common table expressions are useful

Chapter 12 Write Large SQL StatementS

322

to prevent repetition, but otherwise they make our statements more complicated by

increasing the context and making debugging harder.

We need to learn this inside-out structure anyway, in order to understand execution

plans. For example, Figure 12-3 is the execution plan for the Chapter 6 example code.

Just like with inline views, we start with the most-indented level and then read top to

bottom within that level. Then we move out a level and repeat.

You don’t need to understand all the operations in the following execution plan;

just look at the shape of the execution plan, and note how it’s similar to the shape of the

comment outline at the beginning of this section. When we read nested inline views,

we’re trying to understand the SQL statement similar to the way the optimizer does.

 Navigating Inline Views
With nested views, proper indenting, and putting parentheses on lines by themselves

(sometimes called the Allman style), it’s easy to navigate the code and highlight only the

inline views we want to run. Without changing any code, we can quickly debug most of a

large SQL statement.

Figure 12-3. Execution plan example

Chapter 12 Write Large SQL StatementS

323

Figure 12-4 shows how we could highlight and run the first three inline views. Don’t

even try to read the code, the text is too small and it doesn’t matter anyway. Just focus on

the shape of the highlighted selections. Also, notice how we can see the result set after

each execution, at the bottom of the IDE window.

This debugging is easier and more powerful than traditional imperative debugging.

We don’t need to compile the code for debug, we don’t need another interface to step

through the code, and we can inspect entire sets of data at each level, not merely a few

scalar values. It would be trivial to find any problem with the first three inline views.

After we’ve run the innermost inline views, we can start combining the inline views

and generating higher-level result sets. Figure 12-5 shows how we’re now selecting

groups of inline views and moving up the hierarchy. Once again, don’t try to read the

code, just look at the shape of the highlighted sections. At each additional level, we can

see our data get combined and transformed. With any modern IDE it’s trivial to see huge

amounts of data at one time, making debugging much simpler.

Figure 12-4. Debugging the example from Chapter 6 by running the first three
inline views

Chapter 12 Write Large SQL StatementS

324

Figure 12-5. Debugging the example from Chapter 6 by running the last three
inline views

Figures 12-4 and 12-5 simply run a pre-built query. We can easily modify and re-run

any level of the query and see how that change affects the results. For example, we might

want to run the query with a finer granularity, to only focus on one problem row. To

narrow our debugging scope, we might add a condition like LAUNCH_ID = 1 to the first

inline view.

Since each highlighted block is independent, we can replace inline views with

any relational source. We can tweak the inline view code to add more or less rows,

completely rewrite the query, or replace it with a view. We could even procedurally

generate the source data with a PL/SQL table function that returns a collection. (That

advanced technique is described in Chapter 21.)

We can easily view columns that are not projected by changing one of the inline

views to start with a SELECT *. Using a SELECT * at the top level of a query is a bad

idea – we don’t want to return more data than we need. But using a SELECT * in one of

the nested inline views can make debugging easier.

Chapter 12 Write Large SQL StatementS

325

 Summary
The best advice for a new programmer is: the less you know, the less you should do. Start

small instead of trying to build everything at once and ending up with a bewildering

number of errors. This advice is a tiny version of failing fast. Nested inline views help us

start small. The most colossal query starts with a simple SELECT * FROM SOME_TABLE.

Unfortunately, with SQL, too many developers start small and end small. But you

now have the ability, environment, knowledge, and style to start writing progressively

larger SQL statements. Start programming out of your comfort zone. Try building things

in SQL that might seem too complicated, or maybe even a bad idea.

You will certainly run into problems when trying to build large SQL statements.

Large SQL statements create performance risks and require a new way of reading and

debugging. But if you don’t give up, you will certainly solve most of those problems and

create SQL statements that are faster and easier to use.

Chapter 12 Write Large SQL StatementS

327
© Jon Heller 2019
J. Heller, Pro Oracle SQL Development, https://doi.org/10.1007/978-1-4842-4517-0_13

CHAPTER 13

Write Beautiful SQL
Statements
The most important thing about programming styles is to have one. This chapter shows

how traditional SQL styles can prevent us from realizing Oracle SQL’s true potential. This

subjective and opinionated chapter finishes the discussion about how to write beautiful

SQL statements.

Beauty is in the eye of the beholder, but we should base our sense of beauty on sound

principles. Too many developers spend all their time heads-down coding and don’t

stop to ask important meta-questions. We should occasionally look at our code and ask

ourselves – why does this code look good?

Let’s start with a concrete example. The following query counts the orbital and

deep space launches per launch agency. There may be more than one organization

responsible for a launch, so we need to use the bridge table LAUNCH_AGENCY to join

LAUNCH and ORGANIZATION. This first query is my preferred style and is the same style

used throughout this book.

--My preferred SQL programming style.

--Organizations with the most orbital and deep space launches.

select organization.org_name, count(*) launch_count

from launch

join launch_agency

 on launch.launch_id = launch_agency.launch_id

join organization

 on launch_agency.agency_org_code = organization.org_code

where launch.launch_category in ('deep space', 'orbital')

group by organization.org_name

order by launch_count desc, org_name;

328

ORG_NAME LAUNCH_COUNT

--- ------------

Strategic Rocket Forces 1543

Upravleniye Nachalnika Kosmicheskikh Sredstv 905

National Aeronautics and Space Administration 470

...

The following query returns the same results as the preceding query but is written in

a more traditional SQL programming style.

--Traditional SQL programming style.

--Organizations with the most orbital and deep space launches.

SELECT o.org_name, COUNT(*) launch_count

 FROM launch l, launch_agency la, organization o

 WHERE l.launch_id = la.launch_id

 AND la.agency_org_code = o.org_code

 AND l.launch_category IN ('deep space', 'orbital')

 GROUP BY o.org_name

 ORDER BY launch_count DESC, o.org_name;

The rest of this chapter will compare and contrast the styles used in the preceding

two examples. Regardless of our opinions about the styles, there is one style choice that

we can all agree on: use SQL as much as possible. If we rewrote the preceding queries

using imperative, row-by-row logic, the code would be slower and more complex.

This chapter is not a substitute for a coding standard. Making everyone’s code look

the same is a different topic.

We’re not just trying to make our SQL look visually pleasing. The true purpose of

a programming style is to reduce the complexity and improve the readability of our

code. After we internalize the goals of simplicity and readability, our opinions of what

constitutes beautiful SQL should reflect an objective goal of better code.

 How to Measure Code Complexity
Our programming styles should reduce the complexity of our programs, which then

improves readability. But how do we measure code complexity? Programming is hard

enough, trying to formally classify and measure our programs ranges from ridiculously

complex to theoretically impossible.

Chapter 13 Write Beautiful SQl StatementS

329

We don’t have a perfect way to measure code, but that doesn’t mean we can’t reason

about our code. On one end of the spectrum of code metrics, we have complex metrics

like cyclomatic complexity, which counts the number of paths in a program. These

advanced metrics are meant for imperative programming languages and don’t help

with SQL. On the other end of the spectrum, we have simple metrics like comparing the

number of characters of a program.

In practice, most SQL developers compare program complexity by counting the

number of characters, which is a mistake. Characters are the atomic unit of code to

the compiler, but we’re only interested in the atomic unit of code to a human. If we’re

worried about human comprehension, the number of words is much more meaningful

than the number of characters.

It’s worth briefly discussing the importance of words, even though we all intuitively

understand this idea. We think in words – it’s easier to remember a word than a

collection of random characters. We read in words – we don’t sound out the characters,

except for unfamiliar words. We type in words – touch typists memorize whole words

and don’t think about individual characters. A good programming style should minimize

the number of words and ignore the number of characters.

Focusing only on the word count leads naturally to the next two rules – avoid

unnecessary aliases and avoid abbreviations.

 Avoid Unnecessary Aliases
We should not create an alias without a good reason. Aliases are sometimes required,

but most aliases are optional. We have to consider a trade-off when aliasing columns,

expressions, inline views, or table references; aliases let us create more meaningful

names, but aliases also create more variables.

There are clearly many times when it helps to rename things. We certainly want

to use aliases for expressions. (We could reference the expression with double quotes,

but quoted identifiers are painful.) When we return two different columns that share

the same name, we obviously want to change at least one of the names to something

different. When we self-join a table, we need to give at least one instance of the table a

different name. (For example, we may use the same name but with a suffix like _PARENT

or _CHILD.) XML, JSON, and object-relational types may require an alias to access the

values inside the object. And inline views deserve a good alias, especially when inline

views are joined together like tables.

Chapter 13 Write Beautiful SQl StatementS

330

But we must not create aliases simply to save a few characters. The advantages of

using single-letter aliases are trivial; we may save a few bytes or a few seconds of typing.

The disadvantages far outweigh the advantages. Adding unnecessary aliases adds

more variables and consumes the most precious resource – the short-term memory of

a developer. As described in the previous section, it’s the number of words in our SQL

statements that matter, not the number of characters.

For example, we should never use the trivial alias in the following example.

--Without alias.

select launch.launch_date from launch;

--With alias.

select l.launch_date from launch l;

If we were really creating a program with the space data set, we would be intimately

familiar with the LAUNCH table. After the hundredth time, typing the word LAUNCH

becomes automatic and is just as fast as typing the letter L. In the preceding, simple

example, the alias isn’t that bad. But that alias is only tolerable because the example is

trivial. Imagine if there were many other tables, spaced dozens of lines apart; our short-

term memory would be full of useless, one-letter variables, and we would have to spend

a nonzero amount of thought to remember what the alias L stands for.

Unnecessary aliasing reduces the number of characters but increases the number

of words and variables. We quickly grow accustomed to our most common table and

column names. We should take advantage of that familiarity and re-use the same names

when possible. Never create a new variable without a good reason.

 Prefixes and Suffixes
Naming things is hard, and even referring to things by their proper name can be hard.

Should we add useful prefixes and suffixes to our object and variable names? And when

we reference objects, should we prefix the schema or table name? There are no strict

rules in this section, only a discussion of the relevant trade-offs and advice to be flexible.

Chapter 13 Write Beautiful SQl StatementS

331

 Object and Variable Names
When we create objects, variables, and columns, we should avoid adding simple data

type information to the name. For example, avoid adding TBL_ in front of table names or

NUM_ in front of numeric variable names. The object types and data types are easy to look

up, and we don’t need a constant reminder.

On the other hand, I frequently break my own rule and add _VW to the end of views.

There are many times when a view and a table are almost identical, but these two objects

obviously can’t share the same name.

Adding type information to a name is called Hungarian notation. Hungarian

notation originally meant something different, but the idea morphed into something

that is now generally considered a bad idea.1

But there are times when a simple prefix or suffix is important. In PL/SQL, we often

have a variable that contains the same information as a column. It’s tempting to give that

variable the exact same name as the column, but duplicate names leads to ambiguity.

For example, if a PL/SQL function has a parameter named LAUNCH_ID, the code could

contain an ambiguous expression, such as WHERE LAUNCH.LAUNCH_ID = LAUNCH_ID.

To avoid those situations, I prefix parameters with P_, for “parameter,” and I prefix local

variables with V_, for “variable.” The ambiguous expression should be changed to a

non-ambiguous expression like WHERE LAUNCH.LAUNCH_ID = V_LAUNCH_ID.

 Referencing Tables and Columns
We have several choices for how to reference tables and columns. Should we add the

schema name in front of the table? Should we add the table name or alias in front of the

column? The following example shows some of the different options for a simple query.

The correct style depends on the context.

--Four ways to run the same query.

select launch_date from launch;

select launch.launch_date from launch;

select launch.launch_date from space.launch;

select space.launch.launch_date from space.launch;

1 See www.joelonsoftware.com/2005/05/11/making-wrong-code-look-wrong/ for the story
behind Hungarian notation.

Chapter 13 Write Beautiful SQl StatementS

https://www.joelonsoftware.com/2005/05/11/making-wrong-code-look-wrong/

332

The examples in this book do not reference the schema name. The space data set

is installed in the schema SPACE by default, but there’s not much value in adding that

schema name to every query. There’s little chance of confusion when the examples

reference SATELLITE instead of SPACE.SATELLITE.

There’s a trade-off between reliability and readability. It’s possible that we already

have a table in our schema named SATELLITE, and we could confuse that table with

SPACE.SATELLITE. Or that table could be added in the future. But that small risk doesn’t

seem worth the cost of adding hundreds of additional words to our examples.

If we’re constantly querying tables from another schema, we can change our default

schema with this command:

--Default to the SPACE schema.

alter session set current_schema=space;

The examples in this book only put the table name in front of the column name

when the table name is not obvious. It’s good to know where the columns come from,

but many times the source table is unmistakable.

For example, after using the space data set for a non-trivial amount of time, it is

obvious that LAUNCH_DATE comes from the LAUNCH table. But “obviousness” is subjective.

Prefixing every column with the table name is more consistent and may help us when

we’re unfamiliar with the code, but all that prefixing clutters the SQL. Prefixing none

of the columns will make the code smaller and may look better to someone intimately

familiar with the data model, but could be confusing to other developers. We need to

find the right balance and adjust our style depending on the context.

 Avoid Abbreviations
We should avoid uncommon abbreviations and use the unabridged form of words

instead. Abbreviations use less characters but generate the same number of words. Code

complexity is better measured by the number of words than the number of characters,

and not all words are equal.

Uncommon abbreviations are harder to type and harder to read than full words.

The definition of “uncommon” is subjective and depends on the context. If every

programmer on our project instantly recognizes an abbreviation, then we should use it.

But we shouldn’t invent new abbreviations in every SQL statement, and we shouldn’t

follow an “abbreviation guideline” that generates cryptic code.

Chapter 13 Write Beautiful SQl StatementS

333

As a quick example, imagine if our data set used abbreviations for everything:

--Abbreviated. (This code does not work.)

select * from lnch;

--Not abbreviated.

select * from launch;

The first of the preceding two statements is smaller but is less readable. The

abbreviation LNCH only requires a tiny amount of thought – but why make readers think

any more than they have to? Reading the full word requires no thought and lets the

readers focus all their attention on more important things.

There are certainly times when abbreviations are useful or necessary. But the hacker

tendency to remove vowels from all variable names is not helpful. Writing without

vowels technically means we’re not even using an alphabet anymore; writing systems

that only use consonants are called abjads. Abjads work fine in some languages but

not in English or SQL. If we insist on abbreviating everything, we’re fighting against

thousands of years of language evolution.

 Use Tabs for Left Alignment
Tabs versus spaces is an old technology holy war, but it’s worth re-evaluating the

arguments through the lens of an advanced SQL developer. For building large SQL

statements, using left-aligned tabs instead of right-aligned spaces helps us program

faster and focus on the important parts of our SQL statements.

In most programming languages the tabs versus spaces argument is pointless – IDEs

can auto-indent and effortlessly convert between the two. Unfortunately, that kind of

auto-formatting is not always available to SQL developers. As described in the next

section, automatic SQL formatting is not always a good idea. And SQL is often used in

administrative tasks, where we frequently don’t have access to IDEs. And when we’re

using dynamic SQL, we’re stuck manually styling our code anyway.

We need to be able to write SQL relatively quickly, without the aid of a fancy IDE

or auto-formatter. We should be able to make good-looking code without spending a

lot of time adding individual spaces. There are times when our SQL needs to be extra

beautiful, and it’s worth spending the time getting every space just right. But for most of

our code, best is the enemy of good enough.

Chapter 13 Write Beautiful SQl StatementS

334

Programming is not a race, but using tabs when creating SQL will help us code faster

and think more clearly about our code. The difference has nothing to do with hitting one

tab key versus hitting the space bar multiple times. With tabs we can quickly get the code

good enough – indented and left-aligned – versus trying to make the code look perfect

with right-aligned spaces.

Whitespace and alignment is another area where small examples are deceiving.

When we have a trivial SQL statement, like the following code, right-aligning the

keywords looks just as nice as left-aligning. The right alignment can even produce a nice

river of whitespace after the keywords.

--Left-aligned.

select *

from dual;

--Right-aligned with spaces.

SELECT *

 FROM dual;

But the preceding right-aligned style is not scalable. When we compare a more

realistic SQL statement, like the large example from Chapter 6, the right alignment of the

traditional SQL style quickly breaks down. The traditional right-aligned style works fine

when there is only one level to our query. But as soon as we start nesting inline views, we

need the alignment to quickly tell us what level we’re looking at. With left-aligned tabs

we can more easily navigate the inline views.

For large queries we don’t need visual help to identify keywords like SELECT and

FROM. We need visual help to identify the inline views. Figure 13-1 shows the example

code from Chapter 6 and compares left-aligned tabs with the traditional right-aligned

spaces. Don’t try to read the code, just quickly scan it to get a feeling for the shape of the

query. To emphasize the shape of the queries, Figure 13-1 only shows the first word of

each line.

Chapter 13 Write Beautiful SQl StatementS

335

Figure 13-1. Left-aligned tabs versus right-aligned spaces

In the preceding image, the left-aligned tabs version has a simpler and more accurate

shape than the right-aligned spaces version. The left-aligned tabs version uses an entire

line for each inline view parenthesis and equally indents those parentheses. That style is

called the “Allman style,” and it makes the inline views easier to read, write, and debug.

Chapter 13 Write Beautiful SQl StatementS

336

In addition, if we look closely at the right-aligned spaces style, we can see that the

indenting is wrong. Inline views #1, #2, and #3 should all be indented at the same level.

But the right-aligned spaces version incorrectly makes #1 look like the parent of #2

and #3. I tried several popular SQL code formatters and they all made the same huge

mistake. Indenting is meant to convey the parent–child relationships in our code. Simply

being the first line of code does not make it a parent to the next line of code.

The left-aligned tabs style also makes it much easier to copy and paste inline views.

Highlighting and copying inline views is easy because they don’t share a line with

unrelated code. Pasting and formatting the inline view is easy because all we have to

do is highlight and press either Tab or Shift+Tab, to indent or unindent. Compare that

to adding inline views using traditional right-aligned spaces; we have to either change

many individual spaces or reformat the entire statement. Whatever style we use, we must

be able to copy snippets of code in a few seconds.

The main drawback with tabs is that the exact size is undefined. When we’re writing

an email, a post, or a book, to be safe we might want to convert the tabs to spaces when

we’re done.

We want a style that helps us focus on what’s important in realistic SQL statements.

Not a style that adheres to what people traditionally used. Left-aligning with tabs helps

us read and write inline views more easily.

 Avoid Code Formatters
We should not become dependent on automatic code formatters, beautifiers, or pretty

printers. While I appreciate the soulless efficiency of automation, we still need to

maintain the ability to artisanally craft code. Automatic code formatters work well for

most programming languages, but none of them consistently work well for Oracle SQL.

Code formatters have a hard time with Oracle SQL because the language is so

complicated. Whereas most programming languages add features in libraries, SQL tends

to add features as new syntax. That huge syntax makes automatically formatting code

complicated.

A code formatter that works 99% of the time is not be good enough. SQL code

formatters are most likely to fail when our SQL statements become large and use

advanced features – which is exactly when the code formatting is most important.

We don’t always have an IDE available. If we’re doing administration work on

a server, or helping a coworker, we may not have our favorite IDE. And when we’re

Chapter 13 Write Beautiful SQl StatementS

337

creating SQL in a string, for dynamic SQL, no code formatter will help us. Code

formatters either won’t recognize the string as SQL or the string will be invalid SQL until

run time, when we have all the variables. Even our generated dynamic SQL should look

good, as discussed in Chapter 14.

SQL code formatters also focus on small, simple code. As was demonstrated in

the previous section, SQL code formatters focus on unimportant keywords, instead of

properly spacing and aligning inline views.

There are times when we care about precise spacing, but only we can decide on how

to set that spacing. Large SQL statements frequently have to repeat long lists of columns.

We may have many columns we don’t care about, along with one important column we

want to highlight. Putting that important column or expression on a line by itself can

help emphasize what’s important to the reader.

For example, we may have to project 26 columns, but only one column is modified in

an expression. We don’t want to waste 26 blank lines for each column. But we also don’t

want to squish all the columns on one line and miss the important part. The following

code uses a separate line for the important expression but crams everything else

together in a simple list. If we want to use space to emphasize important things, we have

to set the space manually.

--Use space to highlight what's important.

select

 a,b,c,d,e,f,g,h,i,j,k,l,m,

 n+1 n,

 o,p,q,r,s,t,u,v,w,x,y,z

from some_table;

We should disable IDE options that automatically format code on compilation. Even

if we have coding standards, someone may have a good reason for breaking the standard.

Luckily, some IDEs let us disable automatic code formatting for specific code blocks.

SQL developers are going to be stuck in many situations where we need to hand build

our code. We must be able to write code quickly, without relying on a specific code formatter.

 Lower Case
SQL should be written mostly in lower case, like all modern programming languages.

Lowercase code looks better and is easier to read.

Chapter 13 Write Beautiful SQl StatementS

338

Uppercase keywords are associated with older programming languages, such as

assembly, Fortran, and COBOL. SQL is an old language, which has some advantages, but

there are negative connotations with our code looking ancient. Decades ago, there were

good technical reasons to use upper case, but those reasons no longer apply.

The cultural convention today is to use lower case for programming. And lower case,

or mixed case, is obviously the typical choice for normal writing. (There is a consensus

that it is easier to read lowercase writing than uppercase writing. But it’s debatable why

lower case is easier to read, and I’m not sure if the research applies to monospaced fonts

used in programming languages.)

But there are certainly still times when upper case is helpful. When embedding small

SQL statements inside other languages, it helps to use upper case to contrast the SQL

with the other language. Upper case is also useful when writing emails or posts. And

upper case can be useful for helping parts of our PL/SQL programs stick out, like for

global constants.

Most of our time looking at code is in an IDE, where the syntax highlighting is more

important than using case for identifying keywords. There aren’t huge advantages to

using lower case, but if it looks better, is more readable, and is easier to type, we might as

well abandon upper case.

 Summary
This concludes the most controversial opinions in this book, and I will now get off my

soap box. Style tips and tricks have been included in many different parts of this book

and are quickly summarized in Appendix A: SQL Style Guide Cheat Sheet.

Writing SQL, and especially writing large SQL, can benefit from different

programming styles. We can reduce the complexity of our code by avoiding unnecessary

aliases and uncommon abbreviations. Our programming style should help our code

emphasize what’s important, which is usually the relationship between inline views.

Using left- aligned tabs can help us read and write nested inline views. Automatic code

formatters will eventually let us down, so we might as well get used to manually styling

our code. Using lower case can help our code look modern and be more readable.

I hope you are willing to reconsider at least some of the traditional “best practices”

used for writing SQL. No matter which style we prefer, it’s helpful to understand the

reasons why we prefer that style. In practice, we can’t always write code the way we want,

and we have to be willing to compromise. But it’s helpful to have an idealistic style and to

strive to write beautiful SQL statements.

Chapter 13 Write Beautiful SQl StatementS

339
© Jon Heller 2019
J. Heller, Pro Oracle SQL Development, https://doi.org/10.1007/978-1-4842-4517-0_14

CHAPTER 14

Use SQL More Often
with Basic Dynamic SQL
Dynamic SQL is a powerful tool that helps us get the most out of Oracle SQL. With

dynamic SQL we can build our code at run time. Writing code in code is challenging but

offers many opportunities.

First we need to understand when we must use dynamic SQL, when we want to

use dynamic SQL, and when we do not want to use dynamic SQL. The basic features

of dynamic SQL are simple, but we have to be careful to preserve performance and

security. Generating source code is tricky and we need to use specific programming

styles to make dynamic code manageable. When we’re comfortable with dynamic SQL,

we can apply it to several complex scenarios and significantly improve the clarity and

performance of our programs.

This chapter only briefly introduces dynamic SQL. More advanced and more

powerful dynamic SQL solutions are described in Chapter 20.

 When to Use Dynamic SQL
Dynamic SQL is commonly used in four different contexts: to run DDL commands,

when the objects or properties or structure are not known until run time, to simplify

permissions, and to build rule engines. It’s also important to not use dynamic SQL when

there are better alternatives.

340

 Running DDL
The most common use of dynamic SQL is to run DDL commands, since PL/SQL does

not natively support static DDL. The following example shows how DDL must be

executed as a string, not hard-coded into PL/SQL.

--Working PL/SQL block that compresses table with dynamic SQL.

begin

 execute immediate 'alter table launch move compress online';

end;

/

--Broken PL/SQL block that compresses table using static SQL.

--This block raises a PL/SQL compilation error.

begin

 alter table launch move compress online;

end;

/

It might seem odd that PL/SQL does not natively support static DDL, especially since

PL/SQL and SQL are so tightly integrated. In practice, the limitation isn’t a big deal and

we wouldn’t want to use static DDL anyway. Executing dynamic SQL only requires a

few extra keywords. And most DDL commands are destructive and require recompiling

dependent PL/SQL code. If a procedure references an object, and then radically changes

that object, the procedure would have to constantly recompile itself. Oracle is fine with

constantly parsing SQL statements, but recompiling procedural code while that code is

running is a bad idea.

There are a few dynamic SQL traps we must avoid. Although we must always use

dynamic SQL for DDL, we do not always need to use dynamic SQL for DML. We don’t

want to use dynamic code when static code works just fine. Also, just because we can

manage objects at run time does not mean we should manage objects at run time. In

other databases it might be common to frequently drop and recreate tables to hold

intermediate values, but that is not a best practice in Oracle. In Oracle, we should hold

intermediate values either in inline views, PL/SQL collections, or global temporary

tables that are only created once.

Chapter 14 Use sQL More often with BasiC DynaMiC sQL

341

 Unknown Until Run Time
The second most common use of dynamic SQL is when we don’t know the objects,

properties, or structure of the SQL statement until run time. Dynamic SQL works with any

string, so there’s no limit to how much we can change the statement. We can swap table

names, add conditions, change columns, or completely rebuild the entire statement.

For example, let’s create a function to count the number of rows in any table. The

table name is passed into the function and then concatenated into the SQL statement

string. The query is executed, the result is stored in a variable, and then the variable is

returned.

--Use dynamic SQL to count the number of rows in a table.

create or replace function get_count(p_table_name varchar2)

return number authid current_user is

 v_count number;

begin

 execute immediate

 'select count(*) from '||

 dbms_assert.sql_object_name(p_table_name)

 into v_count;

 return v_count;

end;

/

select get_count('LAUNCH') row_count from dual;

ROW_COUNT

 70535

Notice how the preceding code calls the function DBMS_ASSERT.SQL_OBJECT_NAME.

That function ensures that the parameter is a simple string that matches an object name.

If we tried to call the function with a dangerous string like GET_COUNT('LAUNCH; DROP

TABLE STUDENTS;'), the DBMS_ASSERT package would raise the exception “ORA-44002:

invalid object name.” The DBMS_ASSERT package contains several functions that can help

us avoid SQL injection. We must always be careful to not let unauthorized users run

arbitrary code.

Chapter 14 Use sQL More often with BasiC DynaMiC sQL

342

Another popular use for dynamic SQL is when we don’t know the structure of

the WHERE clause until run time. That scenario can happen when we’re building SQL

statements based on values entered on a form. A static query using every element

from a form may get littered with compound conditions like COLUMN1 = V_VALUE1 OR

V_VALUE1 IS NULL. Oracle can better optimize those statements if they are carefully

written with the NVL function, but the resulting query can still be huge and may still have

performance issues. It may be simpler and faster to dynamically generate a query that

only includes relevant conditions.

 Simplify Privileges
One of the lesser-known advantages of dynamic SQL is simplifying privileges. When

compiling PL/SQL objects, the owner of the PL/SQL object must have direct access to

all of the statically referenced objects, at compile time. Unfortunately, that access

cannot be granted through a role. The privileges must be granted directly to the owner of

the PL/SQL object.

For example, imagine if we changed the preceding function and hard-coded a

static reference to DBA_TABLES. Even if our user has the DBA role, the function will fail

to compile with the error “ORA-00942: table or view does not exist.” That error occurs

because the access was only granted through a role and not directly to the user.

Our first instinct might be to solve the problem by granting direct access to the

DBA_TABLES view. A direct grant would work, but we might regret it later when our

privileges are a mess, and auditors are asking why we have so many individual grants.

A better workaround is to use dynamic SQL, and the preceding function is already

set up correctly. The clause AUTHID CURRENT_USER tells Oracle that when the function

runs, the function can use the roles of the user invoking the function. As long as we have

a role that grants us access to the DBA views, we can call the function like this:

--Use dynamic SQL to access DBA views.

select get_count('DBA_TABLES') row_count from dual;

ROW_COUNT

 2302

Chapter 14 Use sQL More often with BasiC DynaMiC sQL

343

This discussion is veering off into complicated PL/SQL topics like definer’s rights

versus invoker’s rights. The important part to remember is that even though dynamic

SQL may require a few more keywords, dynamic SQL can simplify our privilege

requirements. In most organizations it’s easier to add a few lines of code than to get

elevated privileges.

 Rule Engines
Dynamic SQL can be used to build powerful rule engines. Rule engines can be helpful

for tasks like scoring claims based on a large set of criteria. Many medical and insurance

systems have hundreds of rules, many of which contain simple and repetitive logic, such

as IF A AND B THEN 0, or IF B OR C THEN 1, etc.

SQL is a high-level language, with an English-like syntax. If we carefully set up

the columns and expressions, our SQL statements can look surprisingly close to our

requirements. Instead of hard-coding each rule as a query, we can store the rules in a

repository (a table) and then dynamically generate the SQL statements to implement

the rules. Ideally, the rules in that repository can be validated or created by a business

analyst, without any programming knowledge.

In practice, rule engines are difficult to get right. It’s not always easy to store dynamic

code in a relational database. Source code, like any language, is inherently hierarchical.

Oracle is certainly capable of storing and manipulating hierarchical data, but SQL is not

the ideal language for solving difficult hierarchical problems. And while databases are

certainly capable of containing simple text strings, when it comes to versioning our code,

that is still best done with version control software.

Whether or not we want to build a rule engine is a difficult decision. If we do decide

to build a rule engine in Oracle, then we should definitely use dynamic SQL as the

cornerstone of our engine. Building a rule engine can quickly devolve into the quagmire

of creating a custom programming language, we want to stay as close to SQL and PL/SQL

as possible.

 When Not to Use Dynamic SQL
Dynamic SQL is intended for when we don’t know the structure of the query until run

time. Dynamic SQL should not be used simply because we don’t know the values until

run time. If only the values are changing at run time, then bind variables are a better

solution.

Chapter 14 Use sQL More often with BasiC DynaMiC sQL

344

A common misconception is that dynamic SQL is inevitably slower, less secure, or

messier than regular SQL. Unfortunately, many developers avoid using dynamic SQL. It’s

true that dynamic programming presents challenges, but it also provides amazing

opportunities. An unhealthy fear of dynamic SQL can lead to huge anti-patterns and

cause us to miss great opportunities to use SQL to solve problems. Later in this chapter

we’ll see how to tame dynamic SQL with the right programming style.

 Basic Features
There are many dynamic SQL options but most of our programs only needs a few basic

features. We have to decide which version of dynamic SQL to use, understand the syntax,

and how to pass information in and out of the SQL statement.

Oracle has two different kinds of dynamic SQL – the original DBMS_SQL package and

the newer native dynamic SQL that uses EXECUTE IMMEDIATE or the OPEN/FOR syntax.

Native dynamic SQL is almost always the best choice. Native dynamic SQL is faster

and much simpler to use than DBMS_SQL. There are some rare challenges that require

DBMS_SQL, which are discussed in Chapter 20.

As we’ve seen in the previous examples, EXECUTE IMMEDIATE is easy to use – simply

pass the statement as a string. But we must remember to remove the terminator. For

dynamic SQL, the statement should not end with a semicolon. For dynamic PL/SQL,

the PL/SQL block should not end with a forward slash.

Just like static SQL, the results of a dynamic SQL statement can be assigned to

variables using INTO. The following code shows a simple native dynamic SQL example.

--Simple INTO example.

declare

 v_dummy varchar2(1);

begin

 execute immediate 'select dummy from dual'

 into v_dummy;

 dbms_output.put_line('Dummy: '||v_dummy);

end;

/

Dummy: X

Chapter 14 Use sQL More often with BasiC DynaMiC sQL

345

The INTO clause can also include a comma-separated list of variables, if there are

multiple columns returned. If the SQL statement is not a SELECT statement, simply leave

out the INTO clause. Multiple rows of data can be captured with either a BULK COLLECT

and collection variables or a dynamic SQL cursor. But those advanced PL/SQL features

are not discussed here.

 Bind Variables for Performance and Security
Even though dynamic SQL executes concatenated strings, we should still take advantage

of bind variables. Bind variables can significantly improve the performance and security

of our dynamic SQL.

Bind variables are placeholders for real values in SQL statements. Bind variables let

Oracle re-use the same SQL statement for different values, saving a lot of compile time.

Although bind variables and dynamic SQL are opposites, they can still be used

together. For example, the following code uses string concatenation to choose the table

name but uses a bind variable to choose the value.

--Count either LAUNCH or SATELLITE rows for a LAUNCH_ID.

declare

 --(Pretend these are parameters):

 p_launch_or_satellite varchar2(100) := 'LAUNCH';

 p_launch_id number := 4305;

 v_count number;

begin

 execute immediate

 '

 select count(*)

 from '||

 dbms_assert.sql_object_name(p_launch_or_satellite)||'

 where launch_id = :launch_id

 '

 into v_count

 using p_launch_id;

Chapter 14 Use sQL More often with BasiC DynaMiC sQL

346

 dbms_output.put_line('Row count: '||v_count);

end;

/

Row count: 1

In the preceding code, using the bind variable significantly reduces the number of

SQL statements that need to be parsed. There may be multiple parsed statements to

handle the dynamic table name, but not a new statement for every LAUNCH_ID. Bind

variables don’t have to completely eliminate parsing, it’s good enough if they can

significantly reduce parsing.

Bind variables work slightly differently for SQL and PL/SQL. In dynamic SQL, bind

variables are set once per occurrence, regardless of the bind variable name. In dynamic

PL/SQL, bind variables are set once per unique bind variable. In the following example,

both the SQL and PL/SQL code reference the bind variable A twice. The dynamic SQL code

requires two input variables, while the dynamic PL/SQL requires only one input variable.

--SQL requires variables for each bind variable.

--PL/SQL requires variables for each unique bind variable.

declare

 v_count number;

begin

 execute immediate

 'select count(*) from dual where 1=:A and 1=:A'

 into v_count using 1,1;

 execute immediate

 '

 declare

 v_test1 number; v_test2 number;

 begin

 v_test1 := :A; v_test2 := :A;

 end;

 ' using 1;

end;

/

Chapter 14 Use sQL More often with BasiC DynaMiC sQL

347

More important than performance, bind variables can save us from huge security

problems. If we allow untrusted users to enter any value, those users can secretly change

the meaning of our SQL statements. For example, imagine a program with a partial line

of code like this: EXECUTE IMMEDIATE 'SELECT * FROM LAUNCH WHERE LAUNCH_ID =

'||V_VALUE. We might expect the variable to be a number, but what happens if the

variable is a string like this: '1 or 1=1'. We can use DBMS_ASSERT to check values but

even that package is not as safe as a bind variable.

Breaking out of a concatenated string value is called SQL injection, one of the worst

security holes. We must never allow untrusted user input to run in dynamic SQL. There

are many sneaky ways to escape out of a variable. Even numbers and dates are not safe –

it may be possible to alter the session and use weird strings as numeric and date formats.

Dynamic SQL is an awesome, powerful feature. But every time we use it we must

consider the performance and security implications. And just because we’re using

dynamic SQL doesn’t mean we shouldn’t also use bind variables.

 How to Simplify String Concatenation
Dynamic SQL can get ugly. It’s hard enough to build code with code. On top of that, we

have to deal with strings inside strings. To get the most out of dynamic SQL, we need to

be able to write decent-looking code. There are three simple tricks we can use to make

our dynamic SQL infinitely more readable: multiline strings, the alternative quoting

mechanism, and templates.

 Multiline Strings
Oracle supports multiline strings by default, and they are trivial to use. There are still

programming languages that don’t support multiline strings, and many developers are

stuck with the bad habit of concatenating every line.

The previous code example used this multiline string:

 '

 declare

 v_test1 number; v_test2 number;

 begin

 v_test1 := :A; v_test2 := :A;

 end;

 '

Chapter 14 Use sQL More often with BasiC DynaMiC sQL

348

Without multiline strings, we would be left with this mess:

 'declare' ||chr(10)||

 ' v_test1 number; v_test2 number;'||chr(10)||

 'begin' ||chr(10)||

 ' v_test1 := :A; v_test2 := :A;' ||chr(10)||

 'end;'

There is almost never a reason to avoid multiline strings, even though there are

potential ambiguities with line endings. Does the code use ASCII character 10 (new

line), 13 (line feed), or a combination of the two? In practice, it never matters which

one the source code uses. The readability of our code is more important than irrelevant

ambiguities, so we should use multiline strings as much as possible.

 Alternative Quoting Mechanism
Embedding single quotation marks in strings is painful if we only use escape characters.

The alternative quoting mechanism can help us write much cleaner code.

The most common way to embed single quotation marks is to escape them, by using

two single quotation marks next to each other. Escaping can lead to visually confusing

code, as seen in the following code.

--Single quotation mark examples.

select

 'A' no_quote,

 'A''B' quote_in_middle,

 '''A' quote_at_beginning,

 '''' only_a_quote

from dual;

NO_QUOTE QUOTE_IN_MIDDLE QUOTE_AT_BEGINNING ONLY_A_QUOTE

-------- --------------- ------------------ ------------

A A'B 'A '

The preceding code is only the beginning of concatenation hell. When we plug

SQL statements into strings, or nest SQL inside PL/SQL inside strings, our code quickly

becomes repulsive. My personal, shameful record is 12 consecutive quotation marks.

Chapter 14 Use sQL More often with BasiC DynaMiC sQL

349

The alternative quoting mechanism helps us avoid concatenation problems.

We can define our own delimiters and not have to worry about escape characters.

With this improved syntax we can more easily copy and paste SQL statements into code.

To use the alternative quoting mechanism, begin the string with the letter Q, then

a single quote, and then the opening delimiter. If the opening delimiter is one of [, (,

<, or {, then the closing delimiter is the matching],), >, or }. For other delimiters, the

opening and closing characters are the same.

The following example uses the alternative quoting mechanism and returns the

same results as the escape character version. This example demonstrates how the syntax

works, but at first this feature looks like a huge step in the wrong direction.

--Alternative quoting mechanism examples.

select

 q'[A]' no_quote,

 q'<A'B>' quote_in_middle,

 q'('A)' quote_at_beginning,

 q'!'!' only_a_quote

from dual;

This is another case where we can learn the wrong lesson from trivial examples. If

there is only one single quotation mark, then escaping is much simpler. But when we’re

pasting code as strings, the alternative quoting mechanism makes a world of difference.

The following example is more realistic. It compares real dynamic SQL using

escaping versus custom delimiters.

--Escape character.

begin

 execute immediate

 '

 select ''A'' a from dual

 ';

end;

/

--Custom delimiter.

begin

 execute immediate

Chapter 14 Use sQL More often with BasiC DynaMiC sQL

350

 q'[

 select 'A' a from dual

]';

end;

/

With the alternative quoting mechanism, it is trivial to copy and paste entire blocks

of code. If we want to debug the code in an IDE, we can simply highlight and run the

innermost block. When we use escaping, we have to manually change the SQL before we

can test the SQL independently.

This section may sound like syntactic sugar, but the alternative quoting mechanism

is more like syntactic steroids. Without the ability to write clear code, we would avoid

dynamic SQL, which means we would also avoid SQL.

 Templating
String concatenation is still ugly, even with multiline strings and the alternative quoting

mechanism. We can improve our code readability by replacing concatenation with a

simple templating system. There are template libraries but in practice all we need is

simple variable names and the REPLACE function.

For example, imagine we are constructing a dynamic SQL statement with unknown

columns, tables, and conditions. The typical approach may end up looking something

like this:

 'select '''||v_column_1||''', '||v_column_2||'

 from '||v_table||'

 where status = ''OPEN''

 '||v_optional_condition_1

Dynamic SQL will never look quite as good as static SQL, but the preceding code is

almost unreadable. And that code is still only a trivial example. Imagine concatenating

an advanced SQL statement.

Chapter 14 Use sQL More often with BasiC DynaMiC sQL

351

Instead of concatenating results, the following code replaces variables with the real

values.

replace(replace(replace(replace(

q'[

 select '$V_COLUMN_1', $V_COLUMN_2

 from $V_TABLE

 where status = 'OPEN'

 $V_OPTIONAL_CONDITION_1

]',

'$V_COLUMN_1' , v_column_1),

'$V_COLUMN_2' , v_column_2),

'$V_TABLE' , v_table),

'$V_OPTIONAL_CONDITION_1', v_optional_condition_1)

The overall code is larger because we need to add four REPLACE functions. But

the SQL statement is much more readable. All the variable replacing is unimportant

boilerplate code, the SQL statement is what’s important. Making our PL/SQL uglier to

make our SQL prettier is a good trade-off. This templating approach is also vital if we

want to store templates in a repository and use them to create a rule engine.

Dynamic SQL looks much better when we combine multiline strings, the alternative

quoting mechanism, and a simple template system. Dynamic code can quickly grow

out of control, so we need to spend a little extra time to keep our code clean. That effort

will be well worth it if we get to use SQL more often. Dynamic SQL is not perfect, but it’s

better than the alternatives.

 Code Generation, Not Generic Code
Dynamic SQL is typically used for generating code or temporary objects at run time.

But we can also use dynamic SQL to create permanent code. Instead of building one

complex object to handle multiple scenarios, we can dynamically build multiple simple

objects instead.

Dynamic code generation is considered evil in most programming languages. For

example, the EVAL function in JavaScript is frequently abused. Most programming

languages use features like reflection, generics, or polymorphism to create dynamic

programs. But the best practices are different in Oracle.

Chapter 14 Use sQL More often with BasiC DynaMiC sQL

352

The reason for the difference in programming styles is that Oracle is more structured

than other environments, and Oracle is better prepared for frequent compiling. Oracle

is a relational database and has taken to heart the idea of making everything available

through relational interfaces. The data dictionary and dynamic performance views offer

a wealth of information that lets us easily reason about our environment, objects, and

code. Compiling is slow in other languages, but Oracle is able to quickly parse a large

number of statements.

Many of the advanced features in other programming languages don’t work well

in Oracle. Common alternatives to dynamic SQL are object-relational features and the

ANYDATA type. Those alternative technologies are useful in some limited contexts, but

they are not nearly as powerful as SQL.

For example, let’s say we need to create auditing triggers for our tables. Whenever a

value is changed, we want to store the old value in a history table, along with metadata.

The code is going to look relatively simple and repetitive; there will be lots of triggers,

and the triggers will insert data only if the new values are different than the old values.

Instead of copying and pasting code, we might be tempted to build triggers and

a smart procedure that can handle “any” data change. But we’ll quickly find that

converting “anything,” and using generic data types, is painful in SQL and PL/SQL.

Instead of building one smart procedure, it’s better to generate lots of dumb triggers.

With the data dictionary we can easily figure out the column names and types and can

automatically generate the boilerplate code.

If we use a code generator approach, we need to spend extra effort to make both the

code generator and the generated code look good. The compiler doesn’t care if triggers

look nice, but eventually other programmers will see the code. We should also add a

warning comment, such as “Do not modify, this code was automatically generated by

<package name>.”

There are many systems where we have to choose between a smart generic solution

and an automatically generated simple solution. In Oracle, if we know how to tame

dynamic SQL, generated code is usually the best solution.

Chapter 14 Use sQL More often with BasiC DynaMiC sQL

353

 Summary
Dynamic SQL is a great feature and can be used for running DDL, simplifying

privileges, building code that is only known at run time, and constructing large rule

engines. The basic features are simple, but to get the most out of dynamic SQL, we

need a programming style that incorporates multiline strings, the alternative quoting

mechanism, and templates. If our code looks good, it will run good. We need to consider

performance and security and use bind variables when possible. There are many cases

where generating dumb code is better than writing smart generic code. With dynamic

SQL we can capitalize on Oracle’s greatest strength – SQL.

Chapter 14 Use sQL More often with BasiC DynaMiC sQL

355
© Jon Heller 2019
J. Heller, Pro Oracle SQL Development, https://doi.org/10.1007/978-1-4842-4517-0_15

CHAPTER 15

Avoid Anti-Patterns
So far this book has mostly focused on what we should do. It is also helpful to discuss

the things we should not do. This chapter contains a list of anti-patterns – programming

concepts and styles that we should avoid.

Anti-patterns are subtle mistakes, not merely trivial compiler errors that we can

immediately fix. Anti-patterns are mistakes that might save us time today but cost

us more time tomorrow. We need to proactively avoid certain shortcuts so we don’t

accumulate too much technical debt.

The anti-patterns in this chapter are based on my 17 years of experience with Oracle.

For many of those years, I was a liaison between database developers and application

developers; I’ve seen a lot of mistakes made by developers who are experts but new to

Oracle. And I’ve participated in several thousand Oracle questions on Stack Overflow. All

the items in this chapter are real mistakes I’ve seen happen many times. I’ve also made

all of these mistakes myself.

The anti-patterns are ordered roughly by how disastrous they can be for our projects.

Listed first are architectural blunders that can very nearly doom a project. At the end of

the list are relatively minor mistakes that may only doom a single query.

This chapter only focuses on Oracle SQL anti-patterns. There are obviously many

generic programming anti-patterns and anti-patterns for our business domain. There are

many worst practices that we don’t want to learn the hard way.

 Avoid Second System Syndrome and Rewriting
from Scratch
Before we grab our pitchforks and torches and start hating on everyone else’s code, we

need to hear a few words of caution. If we’re too negative and pessimistic about existing

code, and we only focus on the problems, our negativity can lead to other problems.

Focusing only on software mistakes can lead to the second system syndrome and

foolishly rewriting from scratch.

356

The second system syndrome is our tendency to go overboard with expectations for

the second version of a system. We say to ourselves, “the first version worked fine, but

it was too simple and full of architectural mistakes. When we create the second system,

we can realize our utopian vision and add all these awesome new features we didn’t get

around to the first time.”

Agile development can fix some of the problems related to the second system

syndrome. Hopefully we won’t spend too much time architecting features only later

to discover that those features aren’t important. It’s easy to look at old code and see

problems with it, because it’s easier to write code than it is to read code. It’s easy to

be negative in software development, and we need to fight our biases. We need to ask

ourselves if maybe the old system was limited for a reason. Maybe the old development

team painfully discovered that those hundreds of new features are worthless. Or maybe

the original team already tried and failed to implement features that don’t make sense.

Overly pessimistic thinking can also lead us to foolishly rewrite from scratch.1 That

old, large code isn’t necessarily ugly and full of junk. The old code might be battle-

hardened and full of fixes that handle unexpected problems. Chances are good we’re

not smarter than the people who wrote the original code. We’ll make plenty of mistakes

when we write our own version.

The anti-patterns listed in this chapter are problems that can plague our code.

But none of these anti-patterns are programming death sentences, making our code

completely unusable. We can refactor our way out of many problems without throwing

everything out. And a lot of problems we can live with.

We’re biased to think everyone else’s code is trash and our code is great. It’s fun

to poke holes in other people’s code and talk about how bad it is. Anti-patterns can

definitely teach us a lot about programming and help us avoid mistakes. But we should

keep a positive attitude, especially when sharing our opinions with someone else.

Instead of saying, “your code sucks because of X,” we should say, “our code could be

better because of Y.”

1 Joel Spolsky has written about the problems with rewriting code from scratch:
www.joelonsoftware.com/2000/04/06/things-you-should-never-do-part-i/.

Chapter 15 avoid anti-patterns

http://www.joelonsoftware.com/2000/04/06/things-you-should-never-do-part-i/
http://www.joelonsoftware.com/2000/04/06/things-you-should-never-do-part-i/

357

 Avoid Stringly Typed Entity–Attribute–Value Model
Entity–attribute–value (EAV) models allow extreme flexibility for storing data in

relational tables, but we must not use the wrong data types. EAV is a contentious topic in

database design, with several pros and cons. Although it is reasonable to relax some of

our database norms when using an EAV, we must never abandon type safety.

 EAV Pros and Cons
EAV is a table structure where each value is stored in a separate row, instead of using

multiple columns to store multiple values per row. EAV tends to be preferred by

architects and application programmers, while database administrators and database

developers tend to avoid EAV.

Simply using an EAV is not an anti-pattern. There are several ways to build an EAV

model, and the following table is a simple and safe way. (Although a real EAV table

should include more named constraints, references to other tables, comments, etc.)

--Simple and safe EAV.

create table good_eav

(

 id number primary key,

 name varchar2(4000),

 string_value varchar2(4000),

 number_value number,

 date_value date

);

insert into good_eav(id, name, string_value)

values (1, 'Name', 'Eliver');

insert into good_eav(id, name, number_value)

values (2, 'High Score', 11);

insert into good_eav(id, name, date_value)

values (3, 'Date of Birth', date '2011-04-28');

Chapter 15 avoid anti-patterns

358

With the preceding table, we don’t have to add columns to add new types of data. We

can add any kind of value at any time, using only an INSERT statement. The EAV table is

skinnier and denser than a regular table that holds the same data.

Table 15-1 summarizes the different trade-offs of using an EAV model versus using

multiple columns.

Table 15-1. Comparison of EAV and Non-EAV Tables

EAV Non-EAV

Flexibility allows any value without ddL requires ddL for new columns

Performance difficult to index, opaque to optimizer easy to index, transparent to optimizer

Appearance Looks nicer in an er diagram Looks nicer in an ide

Type safety no constraints, requires dangerous

conversions

allows constraints, no dangerous

conversions

Size smaller for sparse tables smaller for dense tables

Querying difficult – requires more tables,

conditions, and conversions

simple – just reference the column

Depending on the context, different items in the preceding list will carry more

or less weight. For example, if the table is only going to hold a dozen rows, then the

performance difference doesn’t matter.

As long as we’re honestly considering and weighing the pros and cons, there’s

nothing wrong with choosing an EAV model. The anti-pattern occurs when EAV models

are implemented incorrectly.

 Never Use the Wrong Type
The anti-pattern happens when an EAV table uses only a single column to store all

values. One of the few absolute rules of relational databases is that we must never store

data as the wrong type. No exceptions. Even if we have unstructured data like XML or

JSON, we can still store them as an XMLType or with the IS JSON check constraint. We

must never create an EAV table like the following one.

Chapter 15 avoid anti-patterns

359

--Never create a table like this:

create table bad_eav

(

 id number primary key,

 name varchar2(4000),

 value varchar2(4000)

);

insert into bad_eav values (1, 'Name' , 'Eliver');

insert into bad_eav values (2, 'High Score' , 11);

insert into bad_eav values (3, 'Date of Birth', '2011-04-28');

Storing all values as a VARCHAR2(4000) is one of the worst mistakes we can make in a

database. The database can no longer ensure type safety; we have to implement our own

logic to ensure that a number is a number and a date is a valid and properly formatted date.

(As discussed in Chapter 7, verifying number and date formats is not a trivial task, especially

when we consider internationalization and localization.) Every time we use an incorrectly

typed value we need to remember to use the right conversion functions. The numeric and

date values will use more space than their native values. The optimizer will be completely

unable to reason about the values and will have a hard time building good execution plans.

Systems that store all their values as strings are jokingly referred to as “stringly typed.”

(A pun based on the phrase “strongly typed.”) This problem can occur in many places;

columns, parameters, variables, and expressions can be incorrectly processed as strings.

This problem is tricky because the implicit conversion will work most of the time. It’s easy

to miss these problems during testing and have bugs suddenly appear in production.

 Subtle Conversion Bugs in Oracle SQL
Stringly typed data is especially bad in Oracle SQL because it creates subtle,

nondeterministic bugs. For example, look at the following code. I normally dislike

quizzing readers, but in this case I want you to try to spot the bug.

--Simple query against stringly-typed EAV that will likely fail.

select *

from bad_eav

where name = 'Date of Birth'

 and value = date '2011-04-28';

Chapter 15 avoid anti-patterns

360

The preceding query will likely fail with the error message “ORA-01861: literal does

not match format string.” The second predicate implicitly converts VALUE into a date and

relies on our server or client’s format parameters. Implicit data conversion is difficult

because there are many rules and it’s not always clear which value will get converted.

The SQL Language Reference contains a section about implicit data conversion and a

long list of rules. The preceding query wouldn’t have crashed if the date was converted to

a string first, but one of the implicit data conversion rules is that characters are converted

to dates. (Don’t bother trying to memorize the implicit data conversion rules – the best

solution is to never use implicit conversion in the first place.)

There are three obvious ways we might try to fix the preceding query.2 We could

compare the column to a string instead of a date literal. Or we could use explicit date

conversion functions. Or we could alter the session and set the NLS_DATE_FORMAT

parameter to the relevant format. But those innocent-looking fixes are dangerous.

Let’s play the spot-a-bug game one more time. Look at the following code and try to

find the problem.

--Insidiously wrong way to query a bad EAV table.

select *

from bad_eav

where name = 'Date of Birth'

 and to_date(value, 'YYYY-MM-DD') = date '2011-04-28';

If we run the preceding query, it will probably work. But the query is not guaranteed

to work because Oracle may execute the last two predicates out of order. The TO_DATE

function can only successfully work for “Date of Birth”; it is going to fail if it runs against

“Name” or “High Score.” Even if the data in the table is perfect, depending on the order

of execution, the query will fail.

Forcing a specific query execution order is difficult. Merely re-ordering the query

does not work, and hints are difficult to set up correctly. One of the only safe ways to

query the bad EAV table is to use the ROWNUM trick discussed in Chapter 12.

2 In version 12.2 we could also use this new syntax to handle conversion errors: TO_DATE(VALUE
DEFAULT NULL ON CONVERSION ERROR, 'YYYY-MM-DD'). While that function is perfectly safe, we
still have to remember to use it every time we reference an unsafe column.

Chapter 15 avoid anti-patterns

361

--Type-safe way to query a stringly-typed EAV.

select *

from

(

 select *

 from bad_eav

 where name = 'Date of Birth'

 and rownum >= 1

)

where to_date(value, 'YYYY-MM-DD') = date '2011-04-28';

What did we gain by replacing the three columns STRING_VALUE, NUMBER_VALUE,

and DATE_VALUE with the single column VALUE? Nothing. In practice, we rarely have

data so generic that we can’t even be bothered to learn its type. Even if we’re only going

to display data on a screen, we still need to know the type so we can properly justify

the displayed values. If we have unstructured data, we can create another EAV column

named XML_VALUE and make the column an XMLType.

Incorrectly typed data is a horrible situation that we should never be in. Using the

wrong data types may doom us and all future SQL developers to writing weird queries

and dealing with tricky random bugs. We must use the right data type every time so we

don’t have to worry about these problems.

I’ve seen the negative long-term effects of stringly typed data several times. Some

systems randomly generated type errors that nobody could reliably reproduce, and

everyone just learned to live with it. On other systems we had to add protective layers

to any query that touched the EAV. On the other hand, some systems can get away with

it; perhaps their data is only accessed in one specific way, or they just got lucky. We

don’t want to design our systems to require luck, so spend a minute to create a few extra

columns.

 Avoid Soft Coding
All developers understand the importance of avoiding hard-coding. We’re always

looking for ways to create abstractions that hide our code from implementation details.

We want to be able to change our program’s behavior without changing a lot of code and

possibly without even recompiling. In SQL, we can improve the safety and performance

Chapter 15 avoid anti-patterns

362

of our queries by using bind variables instead of hard-coding literals. But any best

practice can be taken too far; an unhealthy aversion to changing code can lead to the soft

coding anti-pattern.

We all want to make our programs smart and flexible. As we discussed in Chapter 14,

our code can be too smart. It’s better to automatically generate simple code with dynamic

SQL than to create a super-complex block of code with esoteric PL/SQL. As we saw in the

previous section, our tables can be too flexible. The most flexible database schema is a

single EAV table, but that would be a nightmare to query. Building the mother of all EAV

tables would eliminate the need to ever run a DDL command, but that solution would

create a database in a database.

We don’t want to build an infinitely generic, infinitely configurable program. Any

sufficiently advanced configuration is indistinguishable from a programming language.

If we try too hard to avoid programming, we’re only going to invent a new programming

language, poorly. This anti-pattern is sometimes called the inner-platform effect.

Things like variable lookups, table-driven configuration, and parameterizing

programs are great ideas. But we must not take those ideas to extremes. We don’t want to

reinvent SQL and PL/SQL with configuration files or tables.

I wish I could tell you that this section is merely theoretical. But unfortunately I have

wasted much of my life trying to tame different soft-coded rule engines. And I have spent

a lot of time unintentionally recreating PL/SQL, poorly.

There are times when we need to build configurable engines. But we must have an

excellent reason for doing so, we must carefully limit the scope, and we should build

them with dynamic SQL instead of obscure PL/SQL features.

 Avoid Object-Relational Tables
Oracle is a multi-model database and supports multiple programming paradigms. We

have to be careful when mixing programming paradigms, not all combinations are

useful. Storing data in a relational model and accessing the data with procedural code

work fine. And mixing procedural code with object-oriented programming works fine.

But storing object-oriented data in relational tables is a bad idea.

Object types are useful for processing and passing data into PL/SQL. Ideally, we

want to do all our processing in SQL, but that’s not always realistic. To help integrate SQL

with PL/SQL, we can create an object type to hold a record of data. If we want to store or

process multiple records at once, we can create a nested table type of that object type.

The following code shows a simple example of creating object types.

Chapter 15 avoid anti-patterns

363

--Object type to hold a record of satellite data.

create or replace type satellite_type is object

(

 satellite_id number,

 norad_id varchar2(28)

 ---Add more columns here.

);

--Nested table to hold multiple records.

create or replace type satellite_nt is table of satellite_type;

Our problems begin when we use SATELLITE_TYPE or SATELLITE_NT for storing data

in tables. Saving object types in tables is marketed as a simple extension of the relational

model. But storing object types is more like a betrayal of the relational model. Object

types can be almost infinitely complex, which means our columns no longer have atomic

values.

As soon as we start creating object-relational tables, the complexity of our data

model increases significantly. We can no longer rely on the huge number of tools that

support the traditional data types. And we can no longer rely on an army of existing

developers that know SQL.

To follow the spirit of the relational model, we should keep our columns and

tables dumb and make our schemas smart. With object-relational tables a single

column can be confusing. Trivial things like inserting data or joining tables become

ridiculously complex. If we can’t easily join our data, there’s no point in using a

relational database.

There are other practical concerns with object-relational technology. If we mix code

and data too tightly, it becomes painful to change either one of them. You don’t want to

learn object-relational programming the hard way; if we change the wrong code, we can

permanently destroy our data. Object databases were a fad in the 1990s, Oracle rode the

wave, but the technology hasn’t been significantly upgraded for a long time.

Object types are fine for PL/SQL collections but we should keep them out of our

tables.

Chapter 15 avoid anti-patterns

364

 Avoid Java in the Database
The primary languages of Oracle databases are SQL and PL/SQL. Despite what the

official sources claim, Java in the database is a distant third place and should be avoided

when possible.

This section is not a rant about the Java programming language. Java is a great

programming language and is frequently used for connecting to databases. Regardless of

how great Java is, there are several reasons to avoid putting Java stored procedures inside

an Oracle database.

 Java Is Not Always Available
The biggest problem with using Java inside Oracle is that Java is not always available.

Oracle owns Java and has been advertising Java in the database for decades, but in

practice we cannot dependably rely on Java being installed.

Java is not available for the Express Edition. I’m not a fan of Express Edition, but a lot

of people use it, so this lack of support is a showstopper for many products.

Java is an optional component in all other database editions. Java is installed by

default, but the component is frequently de-selected or removed by DBAs. The Java

component is often removed because it can cause problems during patching and

upgrades. And unfortunately the Java components are not trivial to reinstall and may

require planning and downtime. And recent versions of Oracle have made this even

worse – Java patching isn’t even included in normal database patching anymore. Some

cloud service providers, such as Amazon RDS, didn’t allow the Java option until recently

and still place limitations on how it’s used.

 Java Does Not Fit Perfectly
It’s unfair to fault a product for not integrating perfectly. But when SQL and PL/SQL

integrate so seamlessly, it’s hard not to get annoyed when dealing with Java stored

procedures.

The types don’t perfectly match. There’s nothing wrong with Java types, but

whenever we pass data back and forth, we have to worry about string sizes, character

sets, precision, etc.

Chapter 15 avoid anti-patterns

365

Java object names are case sensitive and are often larger than 30 characters, which

causes naming problems. The object names look different in the data dictionary, and

virtually all DBA scripts will fail to properly handle Java objects. This problem can be

fixed by translating the names with DBMS_JAVA.LONGNAME, but constantly translating

names is a pain. (Although this problem may be irrelevant in 12.2, which allows for

longer object names.)

 SQL and PL/SQL Are Almost Always Better Choices
Java has more powerful language features than PL/SQL. But those features are irrelevant

to the type of processing that happens inside a database. A good Oracle database

program will do almost all of the heavy lifting in SQL. The procedural language is mostly

used to glue together SQL statements. PL/SQL’s improved integration with SQL more

than makes up for PL/SQL being a less powerful language than Java.

It’s a shame that Oracle and Java don’t get along better. It would be great to be

able to reliably take advantage of existing Java libraries and maybe even integrate with

languages like JavaScript. For the foreseeable future, unless we need functionality that

only Java can provide, are absolutely sure that all our databases have the Java component

installed, and are willing to put up with integration issues, we should avoid Java in the

database.

 Avoid TO_DATE
TO_DATE is a code smell. A code smell isn’t always a bug but it’s a sign that there may be

a deeper problem or anti-pattern lurking in our system. There are certainly times when

we need to use TO_DATE, but an excessive number of TO_DATE calls implies our system is

using the wrong types.

Oracle date creation and processing are surprisingly confusing. Based on the

thousands of Stack Overflow questions I’ve read and participated in, date processing is

one of the largest sources of bugs for SQL developers. This chapter isn’t the place for an

entire date tutorial but luckily we don’t need one. As long as we avoid using the function

TO_DATE, we are on the right path to processing and creating dates.

Chapter 15 avoid anti-patterns

366

 Avoid String-to-Date Conversion
Unless we are loading data from an external source we should never have to convert

strings to dates. Data processing is simpler and faster when values are processed in their

native type. Oracle has many functions for handling dates, and we almost never need to

convert back and forth between dates and strings.

One of the most common date processing mistakes is to use TO_DATE to remove the

time. For example, the pseudo-column SYSDATE includes the current date and time. To

remove the time, and only get the date, a common mistake is to write code like this:

--(Incorrectly) remove the time from a date.

select to_date(sysdate) the_date from dual;

THE_DATE

30-NOV-18

The preceding code is dangerous and may not always work. That code depends on

implicit data conversion. TO_DATE expects a string input, not a DATE. So SYSDATE is first

converted to a string, then converted to a date, using the parameter NLS_DATE_FORMAT for

the conversion.

The system parameter NLS_DATE_FORMAT is frequently overridden by a session-level

parameter. That parameter is intended to be used for how dates are displayed, not for

how dates are processed. If our server-side code depends on an Oracle client setting,

we’re in trouble.

We can’t control a client’s NLS_DATE_FORMAT setting. What if the user wants to

view the time in the output? If a user runs the following command, or their IDE runs a

command like this by default, the preceding code will no longer work:

--Change default date format display.

alter session set nls_date_format = 'DD-MON-RR HH24:MI:SS';

We do not need to use string processing to remove the time from a date. Oracle has a

built-in function for this operation – TRUNC. The following code reliably removes the time

portion of a date, regardless of client settings.

--(Correctly) remove the time from a date.

select trunc(sysdate) the_date from dual;

Chapter 15 avoid anti-patterns

367

This section only includes one example of bad date processing, but there are many

other common bugs. If we ever find ourselves converting dates to strings, and then back

to dates, we’re probably doing something wrong. There is likely an Oracle function that

can do the work more quickly, safely, and easily, in the same data type.

If we’re having date problems, we might want to read the “Datetime Functions”

section in the SQL Language Reference. There are 28 built-in functions that can handle

most of our date processing needs.

 Use DATE, TIMESTAMP, and INTERVAL Literals
Datetime creation is best done with DATE and TIMESTAMP literals. The TO_DATE function

is not a good way to create dates. It’s difficult to change the way we write dates, but there

are so many advantages to using date literals that it’s worth the effort to change.

The following code compares creating dates with literals versus using the TO_DATE

function.

--DATE literal versus TO_DATE.

select

 date '2000-01-01' date_literal,

 to_date('01-JAN-00', 'DD-MON-RR') date_from_string

from dual;

The date literal always uses the ISO-8601 date format: YYYY-MM-DD. Date literals

never have any ambiguity about days versus months, the century, the calendar, or the

language. They also have the advantage of being easily sorted when we view them as

strings. (We don’t normally want to convert our dates to strings, but the format is also useful

outside of database programming, such as when we need to save a date in a file name.)

In practice, every TO_DATE ever used has ambiguity, even if we use an explicit format.

Those of us old enough to remember the Y2K bug already know that a two-digit year is

just begging for trouble. But there’s a lot more wrong with the way TO_DATE was used in

the preceding code.

For example, “JAN” is not a valid month abbreviation in every language. And not

every locale uses the same calendar. If you’re reading this book, the chances are good

that you program in English and use the Gregorian calendar. And many Oracle programs

don’t need to worry about localization and internationalization. But why limit our

programs? Are we sure nobody will ever run our queries and programs with a non-

English client setting?

Chapter 15 avoid anti-patterns

368

Date literals also occasionally help the optimizer build better execution plans. Date

literals are completely unambiguous, and the optimizer can be sure that two different

users will always execute the same statement in the same NLS context. An ambiguous

TO_DATE means that the optimizer may need to parse the same text differently,

depending on client settings. It’s a rare problem, but why risk it?

The preceding discussion also applies equally to TIMESTAMP literals versus

TO_TIMESTAMP. In fact, TIMESTAMP literals have even more advantages because of

standardized time zone formatting. If we want precise dates and timestamps, we should

avoid TO_DATE and TO_TIMESTAMP and use date and timestamp literals instead.

We should also use INTERVAL literals for date arithmetic and storing date ranges.

Default date math is done in days; the current date plus one is equal to tomorrow. In old

versions of Oracle, more advanced date math required converting days to other units,

which is error prone. Modern versions of Oracle simplify the date arithmetic and let us

specify a literal value for a YEAR, MONTH, DAY, HOUR, MINUTE, or SECOND. For example, the

following code compares using date math against an INTERVAL literal.

--Date arithmetic using math or INTERVAL.

select

 sysdate - 1/(24*60*60) one_second_ago,

 sysdate - interval '1' second one_second_ago

from dual;

 Avoid CURSOR
CURSOR is also a code smell. Like TO_DATE, there are times when we need to use CURSOR,

but we should be skeptical of code that frequently uses that keyword.

There’s nothing wrong with cursor processing, the problems happen when we write

code with the CURSOR keyword. Similar to TO_DATE, it’s perfectly fine to use CURSOR when

we’re passing information from a database to an external application.

The main problem with the CURSOR keyword is that it’s used for explicit cursor

processing, instead of the simpler and faster cursor FOR loop processing. This anti-

pattern is another PL/SQL topic in a SQL book. But it’s worth briefly discussing cursor

processing because it so frequently affects how we write SQL. We want a PL/SQL style

that makes it easy to use SQL statements.

Chapter 15 avoid anti-patterns

369

For example, let’s say we want to print all the launch dates in order. The following

PL/SQL block uses explicit cursor processing, with the CURSOR/OPEN/FETCH/CLOSE

commands. This syntax is outdated and should almost never be used.

--Explicit cursor processing: complex and slow.

declare

 cursor launches is

 select * from launch order by launch_date;

 v_launch launch%rowtype;

begin

 open launches;

 loop

 fetch launches into v_launch;

 exit when launches%notfound;

 dbms_output.put_line(v_launch.launch_date);

 end loop;

 close launches;

end;

/

Compare the preceding code with the following much simpler cursor FOR loop

processing.

--Cursor FOR loop processing: simple and fast.

begin

 for launches in

 (

 select * from launch order by launch_date

) loop

 dbms_output.put_line(launches.launch_date);

 end loop;

end;

/

Chapter 15 avoid anti-patterns

370

The second code example is much simpler and it even runs faster. The explicit cursor

processing example only retrieves one row at a time and spends a lot of time context

switching between SQL and PL/SQL. The cursor FOR loop example automatically grabs

100 rows at a time and almost completely eliminates context switches.

Almost all of the things the CURSOR keyword are used for are either unnecessary or

can be replaced by a simpler cursor FOR loop or a larger SQL statement.

Explicit cursor processing allows us to manually bulk collect and limit the results.

But the simpler cursor FOR loop automatically collects 100 rows at a time. As Chapter 16

discusses, collecting 100 rows at a time is almost always good enough.

Explicit cursor processing is often used with FORALL statements. But instead, we can

almost always do both the reading and the writing with a large SQL statement.

Multiple cursors are often defined at the beginning of a procedure and then ran in a

loop inside each other. Instead we should combine the two SELECT statements and run a

single SQL statement.

Cursors are sometimes used for pipelined functions, an advanced PL/SQL feature.

But even pipelined functions are often just a poor way of writing a large SQL statement.

There are certainly good uses for the CURSOR keyword, and I’m not advocating that

we ban CURSOR from our code. But every time we see CURSOR, we should ask ourselves

if we’re missing an opportunity to replace slow, complex procedural code with faster,

simpler, declarative SQL.

 Avoid Custom SQL Parsing
Sometimes when we’re confronted with a difficult SQL language problem, we think,

“I know, I’ll parse the SQL.” Now we have two problems.

There are times when it would be helpful to parse an Oracle SQL or PL/SQL

statement. We may want to find problems in our code, convert between syntaxes,

find references to specific objects, etc. Unfortunately, parsing SQL is so hard that

many language problems can rarely be solved in practice. When we run into a

complex SQL problem, and think we need a parser, we’ve probably hit a dead end.

Unless our code only uses a small, well-defined subset of the SQL language, we

should find another solution.

Chapter 15 avoid anti-patterns

371

The SQL language syntax is orders of magnitude more complex than most other

programming languages. This complexity doesn’t mean that SQL is more powerful than

Java or C. The complexity is because SQL adds many features through syntax, instead of

through libraries or packages. That extra syntax helps our code look nice, but the extra

syntax makes Oracle SQL ridiculously hard to parse.

Most programming languages only have a few dozen keywords, but Oracle has over

2400 keywords and many of the keywords are unreserved. For example, BEGIN is used to

mark the beginning of PL/SQL blocks. But BEGIN can also be used as a column alias. We

can’t simply search for keywords to parse our code. Some keywords also serve multiple

purposes, such as “$”, which has four different meanings. And in Oracle, multiple

languages can work together. Fully parsing SQL also requires parsing PL/SQL, hints, and

Java. There is also a lot of legacy syntax that’s still supported. Even breaking SQL into

lexical units, like numbers and whitespace, is difficult.

There are lots of difficult programming problems, why is parsing worthy of a special

mention? The problem with parsing is that there is not a linear relationship between

accuracy and difficulty. There are many parsing problems that can be solved with 90%

accuracy in a few hours. But 99% accuracy may take days, and 100% accuracy may take

months. As discussed in Chapter 7, a regular expression is theoretically incapable of

parsing a language like SQL. Even if we use powerful parsing tools, like ANTLR or YACC,

the problem is still almost impossible to get right.

For example, consider a common and deceivingly simple language problem –

determining if a SQL statement is a SELECT. If we have a website that accepts code, like

SQL Fiddle, we need to classify each statement so we know how to run it. I’ve seen many

solutions to this problem but very few of them can correctly classify all of the following

SELECT statements:

--Valid SELECT statements.

SeLeCt * from dual;

/*asdf*/ select * from dual;

((((select * from dual))));

with test1 as (select * from dual) select * from test1;

If we try to parse SQL, we can very easily program ourselves into a corner and waste

a huge amount of time. Unless we can identify a special case, like if we can ensure our

parsed code will always have a specific format, we should avoid creating SQL parsers.

Chapter 15 avoid anti-patterns

372

 Avoid Automating Everything
Automation is great but not every automated process or technology is worth using. For

every painful, manual task, there is a long line of vendors willing to sell us software,

whether that software makes sense or not. We need to remember that many information

technology projects fail, and we need to avoid the sunk cost fallacy. Sometimes we need

to avoid small features that sound useful, but don’t work in practice.

The following list includes examples of automation features that don’t quite work in

Oracle.

 1. Automatic memory management: This feature was never

officially recommended, and in 12.2 it is effectively disabled.

This feature failure doesn’t make sense to me – it seems like it

shouldn’t be that hard to dynamically size PGA and SGA.

 2. Recycle bin space pressure: Dropped tables are supposed to be

automatically cleaned up when the system needs the space. But

the algorithms to reclaim the space are poorly documented, and

in practice tables don’t always purge themselves when we need

space. For now, every time we drop a table, we still have to worry

about adding the PURGE clause.

 3. Tuning advisors: The optimizer works great, Oracle’s

performance monitoring tools are great, but the programs that

suggest performance changes are rarely helpful. The advisors

might work fine for simple problems, like adding an obvious

index. But in my experience the advisors are rarely helpful for

complex problems.

 4. Version control: As discussed in Chapter 2, we cannot fully

automate version control. We can’t just willy-nilly change whatever

we want in a development database and expect tools to magically

copy it into production for us. Programming is still best done using

version-controlled text files and manually checking the conflicts.

Remember that standardization is a prerequisite for automation. If we have a

perfectly standard environment, some of the preceding items might work fine. If we have

a completely-out-of-control environment, we may have a hard time even automating

tasks like patching.

Chapter 15 avoid anti-patterns

373

Some things are just best done the old-fashioned way. But some things change

over time. Hopefully most of the items in the preceding list will work perfectly in future

versions of Oracle or in an autonomous Oracle database cloud environment.

 Avoid Cargo Cult Syntax
Too much copy-and-paste programming can lead to cargo cult programming. Cargo cult

programming is when we ritualistically include things in our code, even though we have

no reason to believe those things will bring about the desired result.

For example: changing COUNT(*) to COUNT(1), changing <> to !=, the (incorrect)

NOLOGGING hint, or any minor syntax change that is supposed to improve performance

for no discernable reason.

We’re all guilty of copying and pasting code we don’t understand. This book even

occasionally advocates the use of weird syntax, such as using ROWNUM to control optimizer

transformations. But we need to occasionally question what we’re copying and pasting.

If these miraculous syntax changes are real, we should be able to measure them. If

we can’t build a reproducible test case to demonstrate something, then we shouldn’t

promote it.

 Avoid Undocumented Features
Our code should not rely on undocumented or unsupported functionality. Oracle has

interesting features just sitting around, gathering dust, but we must resist the urge to

use something that we may regret later. Those undocumented features may be part of

an optional component that will go away, or they may be an experimental feature that

doesn’t work as expected.

The most famous example of an undocumented feature is the WM_CONCAT function.

WM_CONCAT was a string concatenation function, used internally as part of Workspace

Manager. Before Oracle 11.2, there was no standard string concatenation function, and

developers had to create their own. Many developers noticed that WM_CONCAT already

existed and started using that function. Unfortunately, WM_CONCAT was dropped in

version 12.1, breaking many queries and programs during upgrades.

Many features are unofficially available in versions before they are documented.

Maybe those features were experimental, too buggy, or weren’t thoroughly tested

yet. Either way, it is foolish to use undocumented features. There are arguably some

Chapter 15 avoid anti-patterns

374

exceptions to that rule; if we find a useful feature, and if we can easily test that the feature

works, and if it’s only going to be used in temporary ad hoc scripts, then it might be fine

to use that undocumented feature.

We should also avoid undocumented parameters – the parameters that start with an

underscore. Theoretically, we’re only supposed to set undocumented parameters if an

Oracle support engineer tells us to. But in practice, we can read the My Oracle Support

notes and usually figure out when an undocumented parameter is necessary. And it’s

not like an Oracle support engineer is going to stop helping us as soon as they discover

any hidden parameters. In practice, many databases have a few hidden parameters set.

 Avoid Deprecated Features
We should avoid deprecated features. When Oracle discourages the use of certain

features, we should heed their warning and switch to newer and better options. We

should periodically check the “Database Upgrade Guide” for chapters full of newly

deprecated and desupported features. Oracle usually keeps deprecated features around

for a long time, but those features won’t be improved. The old versions will likely be

buggier, less convenient, and slower than the new versions.

For example, we can still use the old EXP and IMP utilities, but they’re not nearly as good

as the new EXPDP and IMPDP utilities. Or we could still use many XML functions that were

deprecated a long time ago, but they may run significantly slower than new XML functions.

Do not confuse deprecated with desupported. Deprecated features still work fine

and might be desupported in the next version. We should be cautious when using

deprecated features, because we don’t want to tie our code to something that is going to

break in the future. But we should also be skeptical of deprecation, because sometimes

Oracle deprecates the cheap features to encourage us to buy the expensive features.

 Avoid Simplistic Explanations for Generic Errors
Oracle has generic error messages that represent a large number of more specific errors.

Using search engines to look up generic error messages doesn’t help, because each

answer only covers one of the many possible root causes. We need to drill down to find

the precise error message and all the relevant arguments and settings. There are several

classes of these generic error messages: dead processes, deadlocks, and the top of the

error stack.

Chapter 15 avoid anti-patterns

375

 Dead Processes
Bugs can cause an Oracle process to die. Processes can die so quickly that there’s not even

enough time to generate a full error message. Oracle reports a generic error message to

the client and only stores the detailed information in the alert log or a trace file.

When we see one of the following error messages, there’s no point in Googling only

the error message itself.

 1. ORA-00600: internal error code

 2. ORA-07445: exception encountered

 3. ORA-03113: end-of-file on communication channel

 4. No more data to read from socket

The preceding errors will generate more information in the database alert log. We

can find the location of the alert log in V$DIAG_INFO. When we find the error message

in the alert log, we should pay special attention to the arguments. We can use the first

argument to search for the real error message on the My Oracle Support website. Only

then can we find the true meaning of the error. If we simply search for “ORA-00600,” we

are extremely unlikely to find anything useful.

 Deadlocks
When we see the error message “ORA-00060: deadlock detected while waiting for

resource,” the first thing we need to do is to find the relevant trace file. The alert log will

contain an entry for deadlock errors and will point to a trace file that contains all of the

information necessary for debugging.

A deadlock is an application problem. Deadlocks are not Oracle bugs and they are

not just a “really bad lock.” Deadlocks are resource consumption problems that can only

be fixed by rolling back one of the two involved sessions.

Deadlocks happen when two different sessions try to lock the same rows but in a

different order. The length and number of locks don’t matter, it’s all about the order of

the locking.

For example, the following code creates a deadlock that will roll back one of the

statements. The tricky thing about creating deadlocks is we need to alternate between

two sessions and precisely control the order the rows are changed.

Chapter 15 avoid anti-patterns

376

--Deadlock example. One session will fail with ORA-00060.

--Session #1:

update launch set site_id = site_id where launch_id = 1;

--Session #2:

update launch set site_id = site_id where launch_id = 2;

update launch set site_id = site_id where launch_id = 1;

--Session #1:

update launch set site_id = site_id where launch_id = 2;

The preceding simple example only updates one row at a time. In the real world the

problems are more complex. When we update multiple rows, we can’t easily control the

order the rows are locked. Different statements can obviously lock rows in a different

order. Even the same statement can lock rows in a different order, if the execution plan

changes; a full table scan may lock rows in a different order than index access. Deadlocks

can occur on indirectly locked objects, such as bitmap indexes which aren’t supposed to

be created on transactional tables.

Diagnosing real-life deadlock problems can be tricky. Don’t even try to solve

deadlocks until you understand the theory of deadlocks and have the specific details

from the trace file. The trace file tells us exactly what objects and statements are involved

in the deadlock, so we don’t need to guess what caused the problem.

 Top of the Error Stack
The error on the top of the error stack is not always important. Buried errors happen

with error messages like “ORA-12801: error signaled in parallel query server PXYZ.”

That single error message doesn’t tell us much, we want to know why the parallel query

server died. Like with deadlocks, these errors are not Oracle bugs. If we look in the full

error stack, or check the alert log, we will find a much more useful error message hidden

inside.

We must always read the entire error message stack, especially for custom exceptions.

In a custom exception handler, the last line number may only point to the last RAISE

command, not the original line that caused the error. As discussed in Chapter 11, there

is a tendency among PL/SQL developers to capture and hide every error message,

instead of letting exceptions naturally propagate. We may need to dig around for the error

message.

Chapter 15 avoid anti-patterns

377

For example, the following code uses the BAD_EAV query with a few modifications:

the query is run in parallel and inside a PL/SQL block. The exception handler may look

helpful because it’s catching and printing the error code. But this exception handler is

doing more harm than good.

--Incorrectly catch and print error code:

declare

 v_count number;

begin

 select /*+ parallel(8) */ count(*)

 into v_count

 from bad_eav

 where name = 'Date of Birth'

 and value = date '2011-04-28';

exception when others then

 dbms_output.put_line('Error: '||sqlcode);

end;

/

Error: -12801

The preceding PL/SQL block only printed the last error code. The error code

-12801 only tells us that a parallel server died, it does not tell us the underlying cause.

If we comment out the exception handler, and re-run the block, it will raise this more

meaningful exception:

ORA-12801: error signaled in parallel query server P001

ORA-01861: literal does not match format string

 Avoid Unnecessarily Small Parameters
There are many complicated trade-offs involved with setting Oracle parameters.

Developers and administrators need to work together to identify how to best use the

available resources. Many parameters are a simple, zero-sum trade-off. For example,

if we set the SGA memory parameters high for one database, then that memory is not

available for another database. For many parameters the problems caused by setting

them too low are not disastrous. For example, if a database gets less than the ideal

amount of memory, the database may still run fine.

Chapter 15 avoid anti-patterns

378

But there are parameters where a conservative approach is harmful. Parameters that

prevent users from logging on are a hard limit, and hitting those limits can be as bad

as a database crash. For many of those parameters, setting the limit high doesn’t cost

anything, unless the resources are actually used.

For the parameters SESSIONS, PROCESSES, MAX_PARALLEL_SESSIONS, and the

profile limit SESSIONS_PER_USER, it is best to use a trust-but-verify approach. Set these

parameters high, even higher than we think we need, and then periodically monitor

resource consumption. It’s better than running out of sessions late at night and

breaking an application. For example, I’ve seen literally dozens of errors on databases

where PROCESSES was set too low, and I’ve only ever seen one problem caused by setting

it too high.

An administrator is likely responsible for setting and maintaining those parameters.

But as developers it is in our own best interest to have good values for parameters that

can effectively break our programs.

 Anti-Patterns Discussed in Other Chapters
There are plenty of anti-patterns discussed in other chapters. Some of those worst

practices are worth mentioning twice. We should avoid storing lists of values in columns,

using the old-fashioned join syntax, writing SQL that depends on the order of execution,

trying to handle all exceptions instead of using propagation, case-sensitive objects that

require quoted identifiers, using advanced PL/SQL features instead of SQL, making

everything publically accessible, and over-engineering systems when a single instance

database works fine.

 Summary
Remember that there are exceptions to every rule. Other than “storing data as the wrong

data type,” the anti-patterns discussed in this chapter are not always evil. We don’t want

to go around telling everybody that their code sucks. But we need to be on the lookout

for bad coding practices that should be avoided.

Chapter 15 avoid anti-patterns

PART IV

Improve SQL Performance

381
© Jon Heller 2019
J. Heller, Pro Oracle SQL Development, https://doi.org/10.1007/978-1-4842-4517-0_16

CHAPTER 16

Understand SQL
Performance
with Algorithm Analysis
Solving Oracle SQL performance issues is the pinnacle of SQL development.

Performance tuning requires a combination of all the skills previously discussed in

this book. We need to understand the development process (to know why problems

happened and weren’t caught sooner), advanced features (to find alternative ways to

implement code), and programming styles (in order to understand the code and rewrite

it into something better).

Programming is one of the few fields with orders of magnitude difference in skill

level between professionals. We’ve all had to deal with coworkers who are only one

tenth as productive as us, and we’ve all been humbled by developers whose code is ten

times better than ours. With performance tuning those numbers get even higher, and the

rewards are greater. It’s exhilarating when we make a small tweak and something runs a

million times faster.

But “a million times faster” is only the beginning of this story. All SQL tuning

guides discuss run times, but none of them consider the run time complexity. Database

performance tuning requires more than an encyclopedic knowledge of obscure features

and arcane settings. Performance tuning calls for a different mindset.

Algorithm analysis is the most under-used approach to understanding Oracle

performance problems. This chapter tells the story of Oracle performance through the

lens of simple algorithm analysis. The sections are not in a traditional order, such as

ordered by performance concepts, tuning tools, or performance problem categories.

The sections are ordered by time complexity, from fastest to slowest.

382

Admittedly, using algorithm analysis to understand Oracle operations is not the most

useful performance tuning technique. But algorithm analysis should not be relegated

to the halls of academia, it should be a part of everyone’s SQL tuning toolkit. We’ll solve

more problems with techniques like sampling and cardinality estimates, but we’ll never

truly understand performance without understanding the algorithms.

Algorithm analysis can help us with both proactive and reactive performance tuning.

For proactive performance tuning we need to be aware of the advantages available if

we create different data structures. For reactive performance tuning we need to be able

to measure the algorithms chosen by the optimizer and ensure Oracle made the right

choices.

The two chapters after this one provide a more traditional approach to performance

tuning; those chapters describe the different concepts and solutions used in Oracle SQL

tuning. This chapter helps us comprehend precisely why the stakes are so high for the

decisions Oracle must make. This material should be useful to SQL developers of any

skill level.

 Algorithm Analysis Introduction
With a few simple mathematical functions we can gain a deeper understanding of the

decisions and trade-offs involved in execution plan creation. Performance results are

often given as simple numbers or ratios, such as “X runs in 5 seconds, and Y runs in 10

seconds.” The wall-clock time is important, but it’s more powerful to understand and

explain our results with mathematical functions.

Algorithm analysis, also known as asymptotic analysis, finds a function that defines

the boundary of the performance of something. This technique can apply to memory,

storage, and other resources, but for our purposes we only need to consider the number

of steps in an algorithm. The number of steps is correlated with run time and is an

oversimplification of the overall resource utilization of a database system. This chapter

ignores measuring different kinds of resource utilization and considers all database

“work” to be equal.

A full explanation of algorithm analysis would require many precisely defined

mathematical terms. Don’t worry, we don’t need a college course in computer science

to use this approach. A simplified version of algorithm analysis is easily applied to many

Oracle operations.

Chapter 16 Understand sQL performanCe with aLgorithm anaLysis

383

Let’s start with a simple, naïve way to search a database table. If we want to find a

single value in a table, the simplest search technique would be to check every row. Let’s

say the table has N rows. If we’re lucky, we’ll find the value after reading only 1 row. If

we’re unlucky, we have to read N rows. On average, we will have to read N/2 rows. As the

number of table rows grows, the average number of reads grows linearly.

Our naïve algorithm for searching a table has a best-case, average-case, and

worst- case run time. If we plot the input size and the number of reads, we’ll see that the

worst- case performance is bounded by the function N. In practice, we only care about

the upper bound. Worst-case run time can be labeled with the traditional Big O notation

as O(N). A real-world solution would also include some constant amount of work

for initialization and cleanup. Constants are important but we can still meaningfully

compare algorithms without constants.

Figure 16-1 visualizes the worst case as a solid line, an asymptote that the real

values can never exceed. Our not-so-smart search algorithm uses the dashed line, and it

takes more or less steps1 depending on exactly where the value is placed in the table. Our

real- world results may look like the dashed line, but to understand performance it helps

to think about results as the solid line.

1 This book uses the word “steps” to refer to the work performed by algorithms. Traditionally,
that value is named “operations.” But Oracle execution plans already prominently use the
word “operation,” so it would be confusing if I used the standard name. This chapter isn’t a
mathematical proof, so it doesn’t matter if our terminology is nonstandard.

Chapter 16 Understand sQL performanCe with aLgorithm anaLysis

384

The functions by themselves are meaningless, it’s the comparison between the

functions that matters. We want Oracle to choose the functions that have the lowest

value on the Y axis, even as the data increases along the X axis.

If Oracle only had to compare straight lines that begin at the origin, then the task

would be trivial. The task becomes difficult when each algorithm’s performance is

represented by a different curve, and the curves intersect at different points along the

X axis. Stated as an abstract math problem: to know which curve has the lowest Y value

Oracle has to determine the X value. Stated as a practical database problem: to know

which operation is fastest Oracle must accurately estimate the number of rows. Bad

execution plans occur when Oracle doesn’t have the right information to accurately

estimate which algorithm is cheaper.

Figure 16-1. Number of steps versus input size for linear search algorithm,
including an asymptote

Chapter 16 Understand sQL performanCe with aLgorithm anaLysis

385

Figure 16-2 shows the most important functions discussed in this chapter. O(1),

O(∞), and Amdahl’s law didn’t fit together on the graph, but they are also discussed

later. Luckily, the most important Oracle operations fall into a small number of

 categories. We don’t need to look at the source code or write proofs, most database

operations are easy to classify. Spend a few moments looking at the lines and curves in

Figure 16-2.

The next sections discuss each function, where we find them, and why they matter.

Comparing the preceding shapes helps explain many Oracle performance problems.

Figure 16-2. Functions that represent important Oracle operations

Chapter 16 Understand sQL performanCe with aLgorithm anaLysis

386

 O(1/N) – Batching to Reduce Overhead
The harmonic progression 1/N perfectly describes the overhead of many Oracle

operations. This function describes sequence caching, bulk collect limit, prefetch,

arraysize, the number of subqueries in a UNION ALL, PL/SQL packages with bulk options

like DBMS_OUTPUT and DBMS_SCHEDULER, and many other operations with a configurable

batch size. Choosing the right batch size is vital to performance. For example,

performance will be disastrous if there is a SQL-to-PL/SQL context switch for every row.

If we want to avoid overhead we have to combine operations, but how many

operations do we combine? This is a difficult question with many trade-offs. Not

aggregating anything is ridiculously slow, but aggregating everything will cause memory

or parsing problems. Batching is one of the keys to good performance, so we need to

think clearly about how much to batch.

Just pick 100 and stop worrying about it. We can be confident in choosing a value

like 100 by understanding the charts in Figure 16-3. The first thing to notice is that the

theoretical results almost perfectly match the real-world results.

Figure 16-3. The effect of increased batch size on total run time

For the theoretical chart on the left, the total run time is the dotted line of the “real

work” plus the solid line of the overhead. By increasing the batch size we can significantly

reduce the overhead. But there is only so much overhead to reduce. No matter how much

Chapter 16 Understand sQL performanCe with aLgorithm anaLysis

387

we increase the batch size the line will never get to zero. Our processes are never purely

overhead, there should always be a significant amount of real work to do.

The lines in the preceding graphs start near infinity and quickly plateau. As we

increase the batch size the overhead rapidly disappears. A batch size of 2 removes 50%

of the overhead, a batch size of 10 removes 90%, and a batch size 100 removes 99%. A

setting of 100 is already 99% optimized. The difference between a batch size of 100 and a

billion cannot theoretically be more than 1%. And the real-world results almost perfectly

match the theory.

The scripts I used to produce the real-world results can be found in the GitHub

repository. There’s not enough space to list all the code here, but the code is worth briefly

discussing. The scripts created two scenarios with a ridiculous amount of overhead;

inserting rows where every value is a sequence, and bulk collecting a small amount of

data and doing nothing with the results. If any test case is going to show a meaningful

improvement created by increasing batch size from 100 to 1000, this was it.

Table 16-1 describes three batching scenarios in detail. These rows are three

completely unrelated tasks that can be perfectly explained with the same time complexity.

Table 16-1. Different Tasks Where Performance Depends on Reducing Overhead

Task Real Work Overhead Configurable Parameter

Bulk collect selecting data sQL and pL/sQL context switch Limit

insert using

sequence

inserting data generating sequence numbers CaChe siZe

application

fetching rows

selecting data network lag fetch size

There are many practical results we can derive from this theory. The default bulk

collect size of 100 used by cursor FOR loops is good enough; there’s almost never any

significant benefit to using a ridiculously high custom limit. The default sequence

caching size of 20 is good enough; in extreme cases it might be worth increasing the

cache size slightly, but not by a huge amount. Application prefetch is different for each

application; we should aim for something close to the number 100. These rules apply to

any overhead-reducing optimization.

Chapter 16 Understand sQL performanCe with aLgorithm anaLysis

388

If we have an extreme case, or drill way down into the results, we can always find a

difference with a larger batch size. But if we find ourselves in a situation where setting

a huge batch size helps then we’ve already lost; we need to bring our algorithms to our

data, not our data to our algorithms.

In practice, bringing algorithms to our data means we should put our logic in SQL,

instead of loading billions of rows into a procedural language for a trivial amount of

processing. If we foolishly load all the rows from a table into PL/SQL just to count them

with V_COUNT := V_COUNT+1, then increasing the batch size will help. But the better

solution would be to use COUNT(*) in SQL. If we load a billion rows into PL/SQL and

perform real work with those rows, the few seconds we save from a larger batch size

will be irrelevant. There are always exceptions, like if we have to access lots of data over

a database link with horrendous network lag, but we should not let those exceptions

dictate our standards.

There are trade-offs between space and run time, but with a harmonic progression

time complexity we will quickly trade space for no run time. Developers waste a lot of

time debating and tweaking large numbers on the right side of the preceding graphs,

but almost all the bang for our buck happens quickly on the left side of the graph. When

we have a 1/N time complexity the point of diminishing returns is reached very quickly.

We should spend our time looking for opportunities to batch commands and reduce

overhead, not worrying about the precise batch size.

 O(1) – Hashing, Other Operations
Constant time access is ideal but often unrealistic. The operations that can work in

constant time are mostly trivial, such as using a predicate like ROWNUM = 1. The constant

time function is simple, just a horizontal line, and is not worth showing on a graph. The

most important Oracle operation that can run in constant time is hashing. Hashing is a

core database operation and is worth discussing in detail.

 How Hashing Works
Hashing assigns a set of items into a set of hash buckets. Hash functions can assign items

into a huge number of cryptographically random buckets, such as STANDARD_HASH('some_

string', 'SHA256'). Or hash functions can assign values into a small number of

predefined buckets, such as ORA_HASH('some_string', 4). Hash functions can be

Chapter 16 Understand sQL performanCe with aLgorithm anaLysis

389

designed with many different properties, and their design has important implications for

how they are used. Figure 16-4 includes simple ways of describing hash functions.

Figure 16-4. Description of different hash functions. Images created by Jorge Stolfi
and are in the public domain.

With perfect hashing, access requires only a single read, and the operation is O(1).

With flawed hashing, where every value is mapped to the same hash, we just end up with

a regular heap table stuck inside a hash bucket. In that worst case, we have to read the

Chapter 16 Understand sQL performanCe with aLgorithm anaLysis

https://en.wikipedia.org/wiki/User:Jorge_Stolfi

390

entire table to find a single value, which is O(N). There is a huge range of performance

that depends on exactly how the hash is designed.

When hashing we need to be aware of space–time trade-offs. In practice we cannot

achieve a minimal, perfect hash. Hash partitioning is minimal (there are no empty

buckets), but far from perfect (there are many collisions) – they don’t provide instant

access for one row, but they don’t waste much space. Hash clusters can be perfect (no

collisions), but are far from minimal (many empty buckets) – they can provide instant

access for a row but they waste a lot of space. Hash joins are somewhere in the middle.

Those three types of hashing serve different purposes, and are described in detail in the

next sections.

 Hash Partitioning
Hash partitioning splits our tables into P partitions, based on the ORA_HASH of one or

more columns. Hash partitioning will certainly not be a perfect hash; each hash bucket

is a segment, which is large and meant to fit many rows. The number of hash partitions

should be minimal – we don’t want to waste segments.

The time to insert a row into a hash partitioned table is still O(1) – the ORA_HASH

function can quickly determine which partition the row goes in. But the time to retrieve

a row will be O(N/P), or the number of rows divided by the number of partitions. That

can be an important improvement for large data warehouse operations that read a large

number of rows. But for reading a single row, that improvement is not nearly as good as

what we can achieve with an O(LOG(N)) B-tree index access. Don’t try to replace indexes

with partitions, they solve different problems.

Don’t try to achieve awesome hash partition performance by significantly increasing

the number of partitions. If we try to build a perfect hash partitioned table, that hash will

not be minimal. A large number of empty segments will waste a lot of space and cause

problems with the data dictionary.

We must use the right columns for the partition key. If we use columns with a low

cardinality, or don’t set the number of partitions to a power of two, the data will not be

evenly distributed among the partitions. If all of the rows are stored in the same bucket

(the same hash partition) then partitioning won’t help us at all.

Hash partitioning is frequently over-used in practice. To avoid abusing that feature,

we need to understand the hashing trade-offs and choose a good partition key.

Chapter 16 Understand sQL performanCe with aLgorithm anaLysis

391

 Hash Clusters
Hash clusters use a hash function to retrieve a small number of rows, unlike coarse hash

partitions that return a large number of rows. In theory, hash clusters are even better

than B-tree indexes for retrieving a small number of rows. The first problem with hash

clusters is that we cannot simply add one to an existing table; we have to organize the

table from the beginning to use a hash cluster. The hash function tells Oracle exactly

where to store and find each row – there’s no need to walk an index tree and follow

multiple pointers. But this is a feature where theory and practice don’t perfectly align.

To get O(1) read time on hash clusters we need to create a near-perfect hash. But we

have to worry about that space–time trade-off. There is no practical way to get perfect

hashes without also creating a huge number of unused hash buckets. We can have a

hash cluster with good performance or a hash cluster that uses a minimal amount of

space; we can’t have both.

When we create a hash cluster we can specify the number of buckets with the

HASHKEYS clause. In my experience, getting O(1) read time requires so many hash

buckets that the table size will triple.

Unfortunately, even after all that effort to get O(1) access time, hash clusters still end

up being slower than indexes. I can’t explain why hash clusters are slower; this is where

our theory breaks down in real-world applications.

Oracle measures the number of reads performed by a SQL statement using a statistic

called “consistent gets.” It’s possible to create test cases where hash lookups require only

one consistent get, while an index access on the same table requires four consistent

gets.2 But the index is still faster. For these operations, the O(LOG(N)) of an index is less

than the O(1) of a hash cluster.

When comparing small numbers, such as 1 versus 4, the constants become more

important than the Big O analysis. Hash clusters are rarely used, and Oracle surely

invests more time optimizing indexes than clusters. Perhaps that optimization can

compensate for the small difference between the run time complexities.

Algorithm analysis helps us drill down to the problem, but in this case the real

performance difference is hidden by constants in closed source software. Perhaps this

is an opportunity for a custom index type. Other databases have hash indexes that don’t

2 See this Stack Overflow answer, where I try and fail to create a useful constant-time
index using hash clusters: https://stackoverflow.com/questions/32071259/
constant-time-index-for-string-column-on-oracle-database

Chapter 16 Understand sQL performanCe with aLgorithm anaLysis

https://stackoverflow.com/questions/32071259/constant-time-index-for-string-column-on-oracle-database
https://stackoverflow.com/questions/32071259/constant-time-index-for-string-column-on-oracle-database

392

require reorganizing the entire table to use them. Maybe someday Oracle will add that

feature and make hash access work better. For now, we should ignore hash clusters.

 Hash Joins
Hash partitioning can run in O(1), with a little configuration, but only for coarse table

access. Hash clusters can run in O(1), with a lot of configuration and space, but in

practice that O(1) is worse than an index’s O(LOG(N)). But what about hash joins? The

exact time complexity is hard to pin down, but we can tell that hash joins are the best

operation for joining large amounts of data.

Hashing assigns values to arbitrary hash buckets, as visualized in Figure 16-4. If we

hash all the rows of two tables by their join columns, the matching rows will end up in

the same bucket, thus joining the two tables. (The performance of hash joins will be

compared with other join methods in a later section.)

Hash joins can only be used for equality conditions. The hash values are just a

mapping of input values, and the relationships between the input values is broken after

hashing. Input value A may be smaller than input value B, but that relationship is not

necessarily true of their hash values.

Hash joins are so useful that it is worth going out of our way to enable them. We can

enable hash joins by rewriting a simple non-equality condition into a weird equality

condition. For example, COLUMN1 = COLUMN2 OR (COLUMN1 IS NULL AND COLUMN2 IS

NULL) is a straightforward, logical condition. We may be able to significantly improve

the performance of joining two large tables by rewriting the condition to NVL(COLUMN1,

'fake value ') = NVL(COLUMN2, 'fake value '). Adding logically unnecessary

functions is not ideal, and may introduce new problems from bad cardinality estimates,

but it’s often worth the trouble if it enables faster join operations.

 Other
Constant time operations show up frequently in Oracle, like in any system. For example,

inserting into a table, creating objects, and altering objects often take the same amount

of time regardless of the input size.

On the other hand, all the operations mentioned earlier also have a nonconstant

time version. Inserting into a table can take more than constant time, if the table is

index organized. Creating objects like indexes can take a huge amount of time to sort

Chapter 16 Understand sQL performanCe with aLgorithm anaLysis

393

the data. Even altering tables may or may not take constant time, depending on the

ALTER command. Adding a constraint usually requires validation against the data,

which depends on the number of rows; but adding a default value can be done purely in

metadata and can finish almost instantly.

We can’t categorize operations based purely on their command type. To estimate the

run time of any command we always need to think about the algorithms, data structures,

and data.

 O(LOG(N)) – Index Access
O(LOG(N)) is the worst-case run time for index access. Index reads are another core

database operation. Indexes were described in detail in Chapter 9, but a brief summary

is included in the following paragraph.

When we search a binary tree, each step can eliminate half the rows of the index.

Doubling the number of rows grows exponentially; conversely, halving the number of

rows shrinks logarithmically. Index access on a simple binary tree is O(LOG2(N)). Oracle

B-tree indexes store much more than one value per branch, and have a worst-case

access time of O(LOG(N)). Figure 16-5 shows an example of a binary tree search.

Figure 16-5. Binary search algorithm. Image created by Chris Martin and is in the
public domain.

Chapter 16 Understand sQL performanCe with aLgorithm anaLysis

https://commons.wikimedia.org/wiki/User_talk:Chris-martin

394

We know how indexes work, and we know that indexes are great for performance,

but comparing the algorithms helps us understand precisely how awesome indexes can

be. Figure 16-6 compares the fast O(LOG(N)) of an index read with the slow O(N) of a full

table scan. This visualization is a powerful way of thinking about index performance.

Most performance tests only compare run times at a single point along a continuum

of input sizes. Thinking about the lines and curves in the preceding visualizations helps

us understand how systems will scale. The amount of work required to read one row

from an index rarely increases, no matter how large the table grows. In practice, we will

never see an Oracle B-tree index grow to a height of 10, unless the data is enormous or

there are strange DML patterns that cause index imbalances. Whereas full table scans

grow and get slower with each new row. Indexes may not help much when our systems

are small but they can make a huge difference when the system grows.

Figure 16-6. Compare O(LOG(N)) index read versus O(N) full table scan

Chapter 16 Understand sQL performanCe with aLgorithm anaLysis

395

So far we’ve mostly discussed small operations – one hash lookup, one index lookup,

or one table scan. The performance comparisons will soon become trickier as we start

iterating the operations.

 1/((1-P)+P/N) – Amdahl’s Law
For optimal parallel processing in a data warehouse we have to worry about all

operations. It is not enough to only focus on the biggest tasks. If our database has N cores,

and we want to run large jobs N times faster, we need to parallelize everything.

Amdahl’s law is the mathematical version of the preceding paragraph. The law can

be expressed as the equation in Figure 16-7.3

We don’t need to remember the equation it’s only listed for completeness. But we do

need to remember the lesson of Amdahl’s law, which can be learned from the graph in

Figure 16-8.

3 Amdahl’s law is not a worst-case run time complexity. But the function is important for
understanding performance and worth discussing here.

Figure 16-7. Amdahl’s law as an equation

Chapter 16 Understand sQL performanCe with aLgorithm anaLysis

396

Notice that the preceding graph uses a logarithmic X axis, and the numbers on the

Y axis are comparatively small. The implications of this graph are depressing; even the

tiniest amount of serialization can dash our dreams of running N times faster.

For example, let’s say we’ve got a large data load and we’ve parallelized 95% of

the process. Our machine has 128 cores, and (miraculously) the parallel portion runs

128 times faster. Yet the overall process is only 17.4 times faster. If we foolishly throw

 hardware at the problem, and increase the cores from 128 to 256, the process will only

run 18.6 times faster. Those are disappointing diminishing returns.

Our time would be much better spent increasing the parallel portion from 95% to

96%, which would increase the performance from 17.4 times faster to 21 times faster.

These surprising performance gains are why we need to spend so much effort finding

exactly where our processes spend their time. We all like to tune with our gut feelings,

Figure 16-8. Amdahl’s law as a graph. Based on “Amdahl’s Law” by Daniels220,
licensed under CC BY-SA.

Chapter 16 Understand sQL performanCe with aLgorithm anaLysis

https://commons.wikimedia.org/wiki/File:AmdahlsLaw.svg
https://creativecommons.org/licenses/by-sa/3.0/deed.en

397

but our intuition can’t tell the difference between 95% and 96%. That level of precision

requires advanced tools and a deep analysis of the process activity.

For data warehouse operations we cannot only worry about the longest-running

tasks. It’s not enough to parallelize only the INSERT or CREATE TABLE statements. To

get the maximum speedup we need to put a lot of effort into all the other data loading

operations. We need to pay attention to operations like rebuilding indexes, re-enabling

constraints, gathering statistics, etc. Luckily, Oracle provides ways to run all of those

operations in parallel. Previous chapters included examples of rebuilding indexes and

re-enabling constraints in parallel, and Chapter 18 shows how to easily gather statistics

in parallel.

To fully optimize large data warehouse operations it can help to create a graph of the

system activity, with either Oracle Enterprise Manager or DBMS_SQLTUNE.REPORT_SQL_

MONITOR.4 As discussed in Chapter 12, optimizing data warehouse operations requires

worrying about even the tiniest amount of system inactivity.

 O(N) – Full Table Scans, Other Operations
O(N) is a simple, linear performance growth. We find this run time complexity all over

the place: full table scans, fast full index scans (reading all the index leaves instead of

traversing the tree), SQL parsing, basic compression, writing or changing data, etc.

There’s not much to see here, but things get interesting in the next section when we start

comparing more functions.

Most Oracle operations fall into the O(N) category. In practice, we spend most of

our tuning time worrying about the constants and hoping for a linear improvement. For

example, direct-path writes can shrink the amount of data written by eliminating REDO

and UNDO data. That’s only a linear improvement, but a significant one.

4 If we set the SQL_ID parameter to the top-level PL/SQL statement, DBMS_SQLTUNE.REPORT_SQL_
MONITOR will generate an activity graph for all child SQL statements.

Chapter 16 Understand sQL performanCe with aLgorithm anaLysis

398

 O(N*LOG(N)) – Full Table Scan vs. Index, Sorting,
Joining, Global vs. Local Index, Gathering Statistics
O(N*LOG(N)) is the worst-case run time for realistic sorting algorithms. This time

complexity can show up in many unexpected places, like constraint validation. Previous

sections discussed algorithms and data structures, but now it’s time to start iterating

those algorithms. An O(LOG(N)) index access is obviously faster than an O(N) full table

scan, but what happens when we’re looking up more than a single row?

Figure 16-9 compares the functions discussed in this section: N^2, variations of

N*LOG(N), and N.

Figure 16-9. Comparing N^2, N*LOG(N), and N

The preceding lines and curves can be used to understand full table scans versus

index access, sorting, joining, global versus local indexes, gathering statistics, and many

other operations.

Chapter 16 Understand sQL performanCe with aLgorithm anaLysis

399

 Full Table Scan vs. Index
Indexes are awesome for looking up a single row in a table – it’s hard to beat O(LOG(N))

read time. But other than primary key or unique key indexes, most index access will

retrieve more than one row. To retrieve multiple rows Oracle must repeat LOG(N)

multiple times.

If an index scan is used to lookup every row in the table, Oracle has to walk the tree

N times, which leads to a N*LOG(N) run time. That run time is clearly much worse than

just reading the entire table one row at a time. The difference is obvious if you look at

Figure 16-8, and compare the slower, solid line of N*LOG(N) against the faster, dotted line

of N. There are many times when a full table scan is faster than an index.

The performance difference is more complicated when Oracle reads a percentage

of rows other than 1% or 100%. Notice the dashed lines in Figure 16-8; they represent

repeating the LOG(N) access for 25%, 50%, or 75% of the rows in the table. As the size

of the table grows, each curve will eventually overtake the linear line for N. We cannot

simply say that one algorithm is faster than another. The fastest algorithm depends on

the size of the table and the percentage of rows accessed. An index might be a good idea

today for reading 5% of a table, but a bad idea tomorrow if the table has grown.

There are other factors that can significantly change the balance. Oracle can use

multi-block reads for full table scans, as opposed to single-block reads for index access.

Using multi-block reads, Oracle can read several blocks from a table in the same time

it takes to read one block from an index. And if the index clustering factor is high (if

the index is not ordered by the value being searched for), an index lookup on a small

number of rows may end up reading all of the blocks of the table anyway.

The theory tells us the shape of the lines, but only practice can tell us the actual

values. I can’t give you an exact number for your system, table, and workload. But there

is a number – a point where a full table scan becomes cheaper than an index. Finding

that number is not trivial, and it should not surprise us that Oracle doesn’t always make

the right decision.

When Oracle fails to make the right choice, we shouldn’t throw out the entire

decision making process by using an index hint. Instead, we should look for ways to

provide more accurate information, to help Oracle make better choices. Helping Oracle

is usually done by gathering optimizer statistics.

Chapter 16 Understand sQL performanCe with aLgorithm anaLysis

400

 Sorting
O(N*LOG(N)) is the worst-case run time for sorting. We always hope our processes will

scale linearly but that is often not the case. In practice, we have to deal with algorithms

that get slower faster than we anticipate. Sorting is a central part of any database, and

affects ORDER BY, analytic functions, joining, grouping, finding distinct values, set

operations, etc. We need to learn how to deal with these slow algorithms, and avoid them

when possible.

For planning, we need to be aware of how performance will change over time.

If sorting one million rows takes 1 second today, we cannot assume that sorting two

million rows will take 2 seconds tomorrow.

We also need to be aware of how the space requirements for sorting will change with

the input size. Luckily, the amount of space required grows linearly. If the number of

rows doubles, the amount of PGA memory or temporary tablespace required to sort will

also double.

There are times when the sorting is already done for us. A B-tree index has already

been sorted – the work was done during the original INSERT or UPDATE. Adding a row to a

table is O(1) – the process only requires adding a row to the end of a dumb heap. Adding

a row to an index is O(LOG(N)) – the process needs to walk the tree to find where to add

or update the value.

Oracle can use an index full scan to read from the index, in order, without having to

do any sorting. The work has already been done; Oracle just needs to read the index from

left to right or right to left.

Oracle can also use a min/max read to quickly find the minimum or maximum value.

The minimum or maximum value in a B-tree will be either all the way on the left, or all

the way on the right. Once again, the data is already sorted, finding the top or bottom

result is a trivial O(LOG(N)) operation.

Oddly, there’s a missing feature where Oracle can’t find both the min and max

using a simple min/max read.5 But the following code shows a simple workaround

to this problem: break the problem into two separate queries, and then combine the

results. Writing an extra subquery is annoying, but it’s a small price to pay for a huge

improvement in run time complexity: O(2*LOG(N)) is much better than O(N). When we

5 See my Stack Overflow answer here for more details: https://stackoverflow.
com/q/43131204/409172.

Chapter 16 Understand sQL performanCe with aLgorithm anaLysis

https://stackoverflow.com/q/43131204/409172
https://stackoverflow.com/q/43131204/409172

401

 understand the algorithms and data structures used by Oracle, we know what to expect,

and when to look for a faster workaround.

--Create a table and query for min and max values.

create table min_max(a number primary key);

--Full table scan or index fast full scan - O(N).

select min(a), max(a) from min_max;

--Two min/max index accesses - O(2*LOG(N)).

select

 (select min(a) from min_max) min,

 (select max(a) from min_max) max

from dual;

The set operations INTERSECT, MINUS, and UNION require sorting. We should use

UNION ALL when possible because it is the only set operation that does not need to sort

the results.

Sorting and joining seem to go together, but in practice they are a bad combination.

The next section discusses why we don’t want to use sorting for our join operations.

 Joining
Hopefully you remember the Venn diagrams and join diagrams from Chapter 1, which

explained how joins logically work. Unfortunately, understanding how joins physically

work is even more complicated. Figure 16-10 visualizes the main join algorithms and

their run time complexity. Each join algorithm is also described in a separate paragraph

after the diagram. You may need to flip back and forth a few times to understand the

algorithms. The diagram visualizes joins as the process of matching rows between two

unordered lists.

Chapter 16 Understand sQL performanCe with aLgorithm anaLysis

402

A nested loop with full table scans is conceptually simple. Start with the first table,

and compare each row in that table with every row in the second table. We can think of

this algorithm as two nested FOR loops. Each phase of the algorithm does N comparisons,

and there are N phases, so the run time complexity is a horribly slow O(N^2). Recall from

Figure 16-9 that the line for N^2 looks almost completely vertical. This join algorithm

should only be used when the tables are trivially small, the optimizer statistics are bad,

or important indexes are missing.

Figure 16-10. Visualization of join algorithms and time complexity

Chapter 16 Understand sQL performanCe with aLgorithm anaLysis

403

A nested loop with index access is a lot smarter. Instead of searching an entire

table for each row, we can search an index. Reducing O(N^2) to O(N*LOG(N)) is a huge

improvement. To better understand this run time, it might help to use separate variables

for the two table sizes; let’s divide N into M and N. If we think about O(M*LOG(N)), the

shape of the curve mostly depends on M instead of N. Even if one of the tables is huge, if

we only have to do a small number of index accesses, the performance will be great. But

if both M and N are large, this join algorithm is not efficient. Nested loops operations work

best when the number of rows is small for one table, and there is index access into the

other table.

A sort-merge join with full table scans operates by first sorting both tables, which is

expensive, and then matching the sorted rows, which is cheap. In practice we don’t see

sort-merge joins very often – nested loops with index access is a better choice for small

joins, and a hash join is a better choice for large joins. But if there are no relevant indexes

(ruling out nested loops), and there is no equality condition (ruling out a hash join), then

sort-merge is the best remaining option. If one of the tables is already presorted in an

index, then half of the sorting work is already done.

A hash join has two phases. The smaller table is read and built into a hash table,

ideally in memory. Then the larger table is scanned, and the hash table is probed

for each row in the larger table. With a perfect hash, writing and reading from a hash

table only takes one step, and the run time is only O(2*N). But in practice there will be

collisions, and multiple rows will be stored in the same hash bucket. The time to perform

hash joins does not grow linearly; hash joins are somewhere between O(2*N) and

O(N*LOG(N)).6

Hash joins have a great run time complexity but that doesn’t mean we always want

to use them. Hash joins read all of the rows of both tables, even if we are only going to

match a few rows. Hash joins require a lot of memory or temporary tablespace, roughly

equal to the size of the smaller input table. A slow algorithm in memory might be better

than a fast algorithm on disk. And hash joins are not always available, because they only

work with equality conditions.

There are many variations of the preceding join algorithms. Cross joins, also known

as Cartesian products, are similar to nested loops with full table scans. Parallelism and

partitioning can always complicate the algorithms. Hash joins can use bloom filters

to eliminate values without fully comparing all of them. Joining is the most important

6 See my answer here for tests comparing sort-merge with hash: https://stackoverflow.
com/a/8548454/409172. When available, hash joins are always faster.

Chapter 16 Understand sQL performanCe with aLgorithm anaLysis

https://stackoverflow.com/a/8548454/409172
https://stackoverflow.com/a/8548454/409172

404

operation in the database, there’s not enough space here to describe all of the features

for joining tables.

Join performance is all about Oracle correctly estimating the size of tables. The

table size determines which algorithms are used, and how the tables are used in the

algorithms.

Hashing and sorting are bad ideas if one of the tables returns no rows – there’s no

need for all that prep work when the intermediate data structures won’t be used.

A nested loop is a horrible idea for two huge tables that have a lot of matching rows.

Bad execution plans happen when Oracle thinks a small table is large, or a large table is

small. How that mistake happens, and how to fix it, is discussed in Chapters 17 and 18.

 Global vs. Local Index
The advantages and disadvantages of partitioning are different for tables and indexes.

Partitioning a table is often a good choice – there are many potential performance

improvements and few costs. Indexes can be either global, one index for the whole table,

or local, one index per partition. Compared to table partitioning, partitioned index

benefits are smaller, and the costs are greater.

Reading from a single table partition, instead of a full table scan, significantly

decreases the run time complexity from O(N) to O(N/P), where P is the number of

partitions. Reading from a local index, instead of a global index, only changes the run

time complexity from O(LOG(N)) to O(LOG(N/P)). That index access improvement is

barely noticeable. (Unless the data is skewed differently between partitions, and some

partitions have indexes that are more efficient than others.)

The cost of reading an entire partitioned table, without partition pruning, is still a

normal O(N). But reading from a local index without partition pruning is much more

expensive than a global index read. Reading from one large index is O(LOG(N)). Reading

from many small indexes is O(P*LOG(N/P)), a significant increase. Walking one big tree

is much faster than walking multiple small trees. We need to think carefully when we

partition, and we should not expect table and index partitioning to work the same way.

 Gathering Optimizer Statistics
Gathering optimizer statistics is an essential task for achieving good SQL performance.

Statistics are used to estimate cardinality, the number of rows returned by an operation.

Cardinality is synonymous with “Input Size,” the X axis on most of the graphs in this

Chapter 16 Understand sQL performanCe with aLgorithm anaLysis

405

chapter. Cardinality is vital information for making execution plan decisions, such as

knowing when to use a nested loop or a hash join.

To get good execution plans we need to gather statistics periodically and after any

significant data changes. But gathering statistics can significantly slow down our process

if we’re not careful. Understanding the different algorithms and data structures for

gathering statistics can help us avoid performance problems.

Finding the cardinality isn’t just about counting the absolute number of rows. Oracle

also needs to measure the distinctness of columns and specific column values. For

example, an equality condition on a primary key column will return at most one row,

and is a good candidate for an index access. But an equality condition on a repetitive

status column is more complicated; some statuses may be rare and benefit form index

access, other statuses may be common and work best with a full table scan. Optimizer

statistics gathering needs to generate results that can answer those more complicated

questions.

Counting distinct items is similar to sorting, which is a slow operation. To make

things even worse, Oracle needs statistics for all the columns in a table, which may

require multiple passes. A naïve algorithm to count distinct values would first sort

those values; it’s easy to measure distinctness if the values are in order. But that naïve

approach would take O(N*LOG(N)) time. A better algorithm would use hashing, and

that’s exactly what recent versions of Oracle can do with the HASH GROUP BY and HASH

UNIQUE operations. As with joining, the time to hash is somewhere between O(N) and

O(N*LOG(N)).

Luckily, when gathering optimizer statistics we can trade accuracy for time. The

default Oracle statistics gathering algorithm performs an approximate count with a

single pass of the table. The single pass algorithm runs in O(N) time and generates

numbers that are accurate but not perfect.

Developers rightfully worry about imperfect values. A single wrong bit can break

everything. But in this case an approximate value is good enough. The optimizer doesn’t

need to know the exact value. Oracle only needs to know if the algorithm needs to be

optimized for “large” or “small” queries.

Chapter 16 Understand sQL performanCe with aLgorithm anaLysis

406

The following example shows how close the approximation is. This code uses the

new 12c function APPROX_COUNT_DISTINCT, which uses the same algorithm as statistics

gathering.

--Compare APPROX_COUNT_DISTINCT with a regular COUNT.

select

 approx_count_distinct(launch_date) approx_distinct,

 count(distinct launch_date) exact_distinct

from launch;

APPROX_DISTINCT EXACT_DISTINCT

--------------- --------------

 61745 60401

The fast approximation algorithm7 only works if we read the entire table. If we try

to sample a small part of the table, the approximation algorithm no longer applies,

and Oracle has to use a different approach. We may think we’re clever setting a small

estimate percent, such as: DBMS_STATS.GATHER_TABLE_STATS(..., ESTIMATE_PERCENT

=> 50). But a slow algorithm reading 50% of the table is slower and less accurate than

the fast algorithm reading 100% of the table. We should rarely, if ever, change the

ESTIMATE_PERCENT parameter.

These distinct counting tricks can also apply to partition statistics, using a feature

called incremental statistics. Normally, partitioned tables require reading the table data

twice to gather statistics; one pass for each partition, and another pass for the entire

table. The double read may seem excessive at first, but consider that we cannot simply

add distinct counts together.

But incremental statistics uses an approximation algorithm that does enable adding

distinct counts. Incremental statistics creates small data structures called synopses,

which contain information about the distinctness within a partition. After gathering

statistics for each partition, the global statistics can be inferred by merging those small

synopses. This algorithm improves statistics gathering from O(2*N) to O(N). That

decrease may not sound impressive, but remember that partitioned tables are often

huge. Saving an extra full table scan on our largest tables can be a big deal.

This algorithm analysis is starting to get recursively ridiculous. We’re discussing

algorithms that help us determine which algorithms to use. And the problem goes

7 Oracle uses an algorithm called HyperLogLog for distinct count approximations.

Chapter 16 Understand sQL performanCe with aLgorithm anaLysis

407

deeper – in rare cases, statistics gathering is slow because the optimizer chooses a bad

plan for the statistics gathering query. For those rare cases we may need to prime the

pump; we can use DBMS_STATS.SET_*_STATS to create initial, fake statistics, to help us

gather the real statistics.

Gathering statistics may feel like slow, annoying maintenance work. But instead of

ignoring optimizer statistics, we should try to understand the underlying algorithms and

use them to our advantage to improve the run time of our systems.

 O(N^2) – Cross Joins, Nested Loops, Other
Operations
O(N^2) algorithms are getting into the ridiculously slow territory. Unless we have special

conditions, such as an input size close to 0, we should avoid these run times at all costs.

This run time complexity happens from cross joins, nested FOR loops, nested loop joins

with full table scans, and some other operations. As a quick reminder of their poor

performance, Figure 16-11 shows N! and N^2.

Figure 16-11. Compare N! with N^2

Chapter 16 Understand sQL performanCe with aLgorithm anaLysis

408

Cross joins are not always bad. Sometimes it is necessary to mindlessly combine

every row in one table with every row in another table. And cross joins can be fast if the

number of rows is close to zero. But cross joins that happen because of incorrectly joined

tables, or because of poor optimizer cardinality estimates, are horrible for performance.

Accidental cross joins are so bad that they can effectively bring down an entire database.

Oracle may need an unlimited amount of temporary tablespace to build the result set,

depriving other processes of space for sorting or hashing.

FOR loops inside FOR loops are the most common way to generate O(N^2) run times

in procedural code. If we add another FOR loop the run time complexity becomes

O(N^3), then O(N^4), etc. Nested FOR loops can easily happen in PL/SQL, and they are

all too common when using explicit cursors. Avoiding that horrible performance is an

important reason why we should always try to replace nested cursors with a single

SQL statement.

Developers write procedural code as nested FOR loops because loops are the easiest

way to think about joins. With imperative code, Oracle cannot fix the algorithms for us –

Oracle is stuck doing exactly what we ask for. The advantage of switching to declarative

code is that we don’t have to worry about these algorithms as much. When we use SQL

we let Oracle decide which join algorithms to use.

It is possible that after switching to declarative SQL the optimizer will still choose an

O(N^2) algorithm. As we saw in Figure 16-10 earlier in the chapter, a nested loops join

with two full table scans is a terrible way to join tables. But that worst case should only

happen if we have missing statistics, missing indexes, or weird join conditions.

O(N^2) shows up in other unexpected places. In extreme cases the SQL parse time

seems to grow exponentially. For example, the parse time becomes ridiculously bad

if we combine thousands of subqueries with UNION ALL. (The code measuring parse

time is too large to include here but it can be found in the repository.) Writing large SQL

statements is a good thing but writing Brobdingnagian SQL is not.

The MODEL clause brings procedural logic to SQL statements. MODEL is a neat trick and

explained briefly in Chapter 19. That clause gives us the ability to turn our data into a

spreadsheet and apply FOR loops to our rows and columns. Just like with PL/SQL, we can

easily find ourselves in O(N^2) performance territory.

A high run time complexity isn’t always avoidable or necessarily bad. But we should

think carefully when we see cross joins or nested operations.

Chapter 16 Understand sQL performanCe with aLgorithm anaLysis

409

 O(N!) – Join Order
O(N!) is as bad as Oracle’s algorithms get, but luckily it’s also rare. As discussed in

Chapter 6, tables have to be joined in a specific order, and there are many ways to order

a set of tables. The problem of ordering tables must be solved by the optimizer when

building execution plans, and in our minds when trying to understand queries.

The optimizer is capable of handling a huge number of tables without serious

problems. But there are always unexpected problems when we push the system to the

limits. For example, if we nest over a dozen common table expressions the parse time

appears to grow like O(N!). (See the GitHub repository for a code demonstration.) In

practice, this problem will only happen because of a rare bug or because we’re doing

something we shouldn’t.

Our minds can only hold a small ordered list in short term memory. If we build our

SQL statements with giant comma-separated lists we’ll never be able to understand

them. Building small inline views and combining them with the ANSI join syntax will

vastly simplify our SQL. There’s no precise equation for SQL complexity, but we can

think of the complexity comparison like this: (1/2N)! + (1/2N)! ≪ N!

For performance we want to batch things together, to reduce overhead. But to

make our code readable we want to split everything up into manageable pieces. That

is precisely what SQL excels at; we can logically divide our queries to make them

understandable, and then the optimizer can efficiently put the code back together.

 O(∞) – The Optimizer
The Oracle optimizer builds SQL execution plans. Building optimal execution plans is

impossible, so we could say this task is O(∞). That run time complexity sounds wrong

at first; Oracle obviously builds at least some optimal execution plans. But it’s helpful to

think of the optimizer as doing an impossible task.

Building the best execution plan means the optimizer must compare algorithms

and data structures, and determine which one runs fastest. But it is literally impossible

to determine if a generic program will even finish, much less how long it will run.

Determining if a program will finish is called the halting problem. Before computers

were even invented, Alan Turning proved that it is impossible for computers to solve the

halting problem. Luckily, this is a problem that’s theoretically impossible to solve in all

cases, but is practically feasible to solve in almost all cases.

Chapter 16 Understand sQL performanCe with aLgorithm anaLysis

410

To add another wrinkle to the problem, Oracle has to generate the execution plan

incredibly fast. A better name for the optimizer would be the satisficer. Satisficing is

solving an optimization problem while also taking into account the time necessary to

solve the problem.

It’s important we understand how difficult the optimizer’s job is. We shouldn’t be

surprised when Oracle occasionally generates a bad execution plan. The optimizer isn’t

as bad as we think, it’s merely trying to solve an unsolvable problem. When the optimizer

is having trouble we shouldn’t abandon it, we should try to work with it.

When a bad execution plan is generated our first instinct shouldn’t be, “how can

I work around this bad plan?” Our first instinct should be, “how can I provide better

information so Oracle can make better decisions?” That information is almost always in

the form of optimizer statistics, which are described in Chapters 17 and 18.

We need to resist the urge to quickly use hints and change system parameters.

Think of the optimizer as a complex forecasting system. We should never change a

system parameter such as OPTIMIZER_INDEX_COST_ADJ just because it helps with one

query. That would be like adding 10 degrees to every weather forecast because the

meteorologist was once wrong by 10 degrees.

 Summary
Many performance problems fall into a small number of run time complexities. Knowing

which functions represent our problems can help us understand why Oracle is behaving

a certain way and how to find a solution. Practical algorithm analysis is simply matching

our problems with predefined classes of problems. We may not use this approach often,

but without it we’ll never be able to truly understand database performance.

Most of our performance problems are related to implementation details and those

pesky constants we’ve been conveniently ignoring. The next chapter looks at a more

traditional list of Oracle performance concepts.

Chapter 16 Understand sQL performanCe with aLgorithm anaLysis

411
© Jon Heller 2019
J. Heller, Pro Oracle SQL Development, https://doi.org/10.1007/978-1-4842-4517-0_17

CHAPTER 17

Understand SQL Tuning
Theories
Algorithm analysis was a useful guide for understanding the foundations of Oracle

performance. Now we must turn to the more traditional techniques and theories of

database performance. First we need to discuss performance issues from the end

user’s perspective. Then we will discuss several popular approaches to performance

tuning. But all roads eventually lead to SQL tuning. For effective SQL tuning we need

to understand the importance of execution plans, the operations available in execution

plans, cardinality, optimizer statistics, transformations, and dynamic optimization

features.

 Managing User Expectations
Before we jump into technical topics we need to address the human aspect of

performance tuning. We’re usually not tuning for ourselves, we’re tuning systems for

clients or end users. We need to carefully think about the end user’s perspective when we

investigate problems, explain resources, present our ideas, and implement the changes.

First we need to get a clear, objective definition of the performance problem. The

end users may not have much experience troubleshooting so it’s up to us to help guide

the conversation. Instead of simply asking, “What’s wrong?” we should ask for specific

details. We need to know: is the problem consistent or intermittent, when does it

happen, how long does it take to run, has it always been this slow, how long should it

take to run, are we sure the problem is in the database and not an application, etc. We

must remember the curse of knowledge and try extra hard to convey tuning information

in simple language. An extra minute spent in the discovery phase can save us hours of

needlessly tuning the wrong thing.

412

When we find and understand the problem we have to consider the available

resources that may provide context for poor performance. Many performance problems

are bugs that can be fixed, but many other performance problems are caused by resource

limitations. We need to understand our database and server resources and honestly

discuss them with end users. I’ve soothed many angry users by explaining, “Our old

servers are slower than your laptop, this is as fast as we can process the data.” Or, “You’re

reading X gigabytes of data, our hard drives can only read Y megabytes per second, this

job is always going to take at least Z seconds.” Many times our end users are willing to

wait if they think the wait is reasonable.

Depending on the scope of the change we may need to present a cost/benefit

analysis to the end user or client, for approval. The cost may be money to buy hardware

or the cost may be our time. Honesty, humility, and testing are important at this

step; it’s not uncommon to throw hardware at a problem and not fix anything, or for

deadlines to slip.

When we implement the change we must be sure to carefully measure performance

before and after. The end users will want to know precisely what they got for their

investment.

Like with most development tasks, most of our performance tuning time will be

spent discussing and coordinating the work instead of the work itself. But this book is

focused on SQL development so let’s jump into the technical work of finding and fixing

performance problems.

 Performance Tuning State of Mind
This chapter is going to disappoint you. I know what you want, but it’s not possible to

build a single, comprehensive performance tuning checklist. Whenever we encounter

a performance problem, we wish we could scan through a checklist, or flip through the

chapters of a book, or refer to a standard operating procedure. There are plenty of lists in

this book, but performance tuning is too complex to be described in simple step-by-step

instructions.

Performance tuning is hard and we need to approach it differently than other

problems. We can’t treat performance tuning like debugging. We need a wide variety of

approaches to guard ourselves against wasting our time with motivated troubleshooting.

Chapter 17 Understand sQL tUning theories

413

 Performance Tuning Is Not Debugging
We have to treat performance problems different than code problems. It’s tempting to

apply the same problem-solving process to both tuning and debugging; find a problem,

drill down to the root cause, then fix or work around the underlying problem. We need to

use a depth-first approach for debugging, and a breadth-first approach for performance

tuning. Developers and administrators who try a depth-first approach for performance

tuning are going to waste a lot of time.

For debugging we only need to find the first problem and then drill down. The

program must work 100% correctly; even a single incorrect byte is worth investigating.

Even if we don’t fix the right problem we still accomplished something useful.

For performance tuning we need to find the first significant problem, and then drill

down. Problems are “significant” if they consume a lot of resources and slow down the

rest of the system, or if they are something the end users are waiting on. A problem is

not significant merely because we don’t like it, or it’s something we know how to fix.

There are always countless candidates for performance problems; the problem could

be something in the application, database, operating system, network, hardware, SAN,

etc. It’s easy to get distracted by red herrings. If we don’t quickly eliminate spurious

correlations we’re going to waste a lot of time.

The art of performance tuning is to use multiple approaches to quickly gather a lot of

data, ignore the 90% that runs fine, ignore the 9% that is slow but necessarily slow, and

find the 1% that is slow and fixable. If we use a simple checklist, with overly simplistic

rules like “avoid full table scans,” we’ll spend too much time fixing the wrong problems.

 Motivated Troubleshooting
We must constantly be on guard for biases that will make us waste days fixing irrelevant

problems. We all have the urge to take the easy path and focus on fixing the problems we

are familiar with. Following familiar paths is a good strategy for bug fixing – any cleanup

is a good thing. Having a utopian view of the code is beneficial.

But performance tuning must stay firmly grounded in reality. The ugly truth is that

nobody will ever fully understand all the wait events or all the execution plan operations.

We only have time to fix the slow ones.

For personal education it’s helpful to investigate anything that doesn’t look right. But

when there’s a critical performance problem we must focus on only the most important

part.

Chapter 17 Understand sQL tUning theories

414

 Different Approaches
There are many ways to investigate our programs for performance problems. The

following list includes the common approaches to database performance tuning. Each

approach works better in different contexts, and we must be willing to quickly change

approaches if one isn’t working. As we gain experience we develop our own tuning style,

and develop a feeling for when something is wrong. Also, technologies change over time

so we must be willing to change our approach.

 1. Application/operating system/hardware: We don’t always have

to solve the most direct problem. Improving one layer in our

system may be enough to make the problem go away in another.

For example, if we can’t fix the execution plan of a statement we

could make up for a slow operation by increasing the hardware

I/O performance. But we can’t always compensate for bad

performance in one layer with a fix in another, and these solutions

can be wasteful and expensive. Non-SQL approaches are not

discussed in this chapter.

 2. Cardinality: Examining the number of rows returned by each

operation of a SQL statement is a useful way of gauging the

accuracy of execution plans. This approach is discussed in a later

section.

 3. Tracing/profiling/sampling: Virtually every activity performed

in Oracle is instrumented. Oracle can capture almost every detail

of almost every SQL statement with tracing. Oracle can capture

the time spent on every line of PL/SQL code with profiling. In

practice, tracing has been almost entirely replaced by Oracle’s

sampling frameworks, such as AWR, ASH, and SQL Monitoring.

Tracing provides a ginormous amount of data but inconveniently.

Sampling provides a huge amount of data and makes the data

easily accessible. Profiling and sampling are discussed in the next

chapter.

 4. Algorithm analysis: Comparing the run time complexity of different

choices helps us understand the trade-offs and decisions made by

Oracle. This approach was discussed in the previous chapter.

Chapter 17 Understand sQL tUning theories

415

 5. Phone a friend: Sometimes we need to admit defeat and seek

help from others. This approach can be as simple as asking a

search engine or our coworkers. Or we can create a Service

Request and ask Oracle to tune for us. (But in my experience

Oracle Support is not helpful for performance tuning, unless

we are certain we have hit a bug. Most support engineers don’t

seem interested in tuning, and will inundate us with requests for

off-topic trace files until we go away.) Or we can rely on Oracle’s

automated advisors to recommend and implement performance

fixes. (But in my experience Oracle’s advisors are rarely helpful.

Hopefully the advisors will improve in future versions.) This

approach is not discussed further in this chapter.

 6. Avoid the problem: The fastest way to run something is to not run

it at all. When we understand our code, and the code’s context, we

often discover a simpler implementation. This approach depends

on using a good development process, understanding Oracle’s

advanced features, and using proper SQL programming styles to

make the code’s meaning more intelligible. The topics discussed

in Parts I, II, and III of this book can fix the majority of our

performance problems. Performance tuning cannot be studied

in isolation. If you skipped to Part IV of this book you missed the

most important tuning tips. Advice like “use inline views and ANSI

SQL join syntax” is indirectly related to performance, but more

important than anything discussed in this chapter.

We all have different preferences and one approach isn’t necessarily better than

another. We can often use expertise in one technique to compensate for a lack of

knowledge in another. For example, this book uses my preferred technique of focusing

on individual SQL statements instead of looking at overall resource utilization; if we take

care of the queries the databases will take care of themselves. Admittedly, that approach

does not always work, so it’s worth reading different sources and learning different

tuning styles.

Chapter 17 Understand sQL tUning theories

416

 Why Not Database Tuning?
Database tuning, performance planning, system architecture and configuration are

important topics, with many books written about them. You might wonder why this book

focuses on SQL tuning instead of database tuning. It’s not just because the book is about

SQL, it’s because SQL is the central component of the database. Tuning SQL will also

alleviate stress on the database, operating system, hardware, network, SAN, etc.

The converse is less likely to be true; it’s easier for SQL improvements to make up for

bad hardware than it is for hardware improvements to make up for bad SQL. Hardware

improvements tend to be linear, while SQL improvements are frequently exponential or

better. Oracle provides so many SQL tuning tools that we can almost always find a way to

make the SQL run faster.

Plenty of systems can limp by with ancient hardware, if the SQL runs well. But if our

execution plans are full of bad Cartesian products then there is no hope. Unless we have

access to a quantum computer there is no way to buy ourselves out of a bad algorithm.

 Declarative Programming (Why Execution Plans Are
Important)
In traditional imperative programming we tell the compiler exactly how to operate, and

we are responsible for creating efficient algorithms and data structures to enable good

performance. In declarative programming, we tell the compiler what we want, and the

compiler tries to find the optimal algorithms and data structures.

 Declarative Quirks
SQL is our declarative language in Oracle. We ask Oracle to modify or retrieve data,

and Oracle has to decide how to join the tables, apply the filters, etc. There are many

interesting consequences of this declarative environment.

For example, Oracle SQL provides consistency and tries to make many things

happen at the exact same moment. The following SQL statement has two references to

SYSDATE, and both of them will always return the same value.

--In declarative SQL, these SYSDATEs generate the same value.

select sysdate date1, sysdate date2 from dual;

Chapter 17 Understand sQL tUning theories

417

When we write SYSDATE in SQL statements, we’re asking Oracle to find the current

date. When we write SYSDATE in PL/SQL, we’re asking Oracle to assign the current date

to a variable. A PL/SQL snippet like this has a small chance of passing two different

values: SOME_PROC(SYSDATE, SYSDATE). Weird things can happen when we switch

between the declarative and imperative worlds.

Oracle may run parts of our code more or less often than we anticipate. A function in

the SELECT list may be called more than once per row – there may be an extra execution

to setup result caching. A function or trigger that is part of a DML statement may be

called more than once – Oracle may restart part of a statement to ensure consistency.

And many times Oracle can decide something is unnecessary and not run it at all, like

the expression in the following EXISTS clause:

--Expression is ignored, no divide-by-zero error is raised.

select * from dual where exists (select 1/0 from dual);

In Chapter 15 we saw the dangers of assuming an Oracle SQL statement will run in

the same order we wrote it. If our data types are wrong, like in a bad EAV data model, and

the predicates are run out of order, we can get run time errors. But the main reason this

declarative-versus-imperative discussion matters is to understand Oracle’s execution plans.

 Execution Plans
Execution plans are the key to SQL tuning. An execution plan shows the precise order of

operations used to execute a SQL statement, along with much other useful information

that tells us how Oracle made its decisions. Those operations and details tell us the

algorithms and data structures used to run our queries. The Oracle optimizer generates

execution plans based on the SQL statement, the objects related to the SQL statement, a

huge amount of statistical information about our database environment, and much more.

SQL tuning is all about finding and fixing execution plans. Unsurprisingly, much has

been written about execution plans, and they are described in detail in the SQL Tuning

Guide manual. Execution plans are sometimes called query plans or explain plans.

There are many ways to find and display execution plans, and there are many ways to fix

execution plans. Finding and fixing plans are discussed in more detail in Chapter 18. To

summarize, the best way to display execution plans is as plain text and with the actual

numbers instead of just estimates. The best way to fix execution plans is indirectly, by

providing more information so the Oracle optimizer can make better decisions.

Chapter 17 Understand sQL tUning theories

418

For example, the simplest way to generate an estimated execution plan is to start

with the EXPLAIN command like this:

--Generate execution plan.

explain plan for

select * from launch where launch_id = 1;

The following command and results show the execution plan1 for the preceding

statement.

--Display execution plan.

select *

from table(dbms_xplan.display(format => 'basic +rows +cost'));

Plan hash value: 4075417019

|Id|Operation |Name |Rows |Cost (%CPU)|

| 0|SELECT STATEMENT | | 1| 2 (0)|

| 1| TABLE ACCESS BY INDEX ROWID|LAUNCH | 1| 2 (0)|

| 2| INDEX UNIQUE SCAN |LAUNCH_PK| 1| 1 (0)|

You don’t have to understand everything in the preceding output yet. For now, it’s

enough to understand how important execution plans are to understanding Oracle

performance.

 Operations (What Execution Plan Decisions Are
Available)
Execution plans are the key to SQL tuning, and operations are the key to understanding

execution plans. Many developers fail at SQL tuning because they focus on the wrong

thing. It’s not good enough to know how long SQL statements run, or how long SQL

1 I used uncommon FORMAT options and removed extraneous spaces so the execution plan lines
will fit the width of the page. These results are another example of formatting that is necessary
when publishing our results, but not something we should typically do.

Chapter 17 Understand sQL tUning theories

419

statements wait on a specific event. It’s more helpful to measure things per operation

than per statement. You could argue that this chapter’s title is wrong – this chapter is

more about “operation tuning” than “SQL tuning.”

 Operation Details
Each line in an execution plan has one operation, which maps to one algorithm. The

Name column in the execution plan tells us the data structure used by that algorithm.

The precise algorithm actually depends on a combination of an operation name

and an operation option. As of 18c, there are 149 operations and 249 operation options.

Usually a single operation only has a few valid options. For example, HASH JOIN is

an operation, and OUTER is an operation option. For convenience those names are

combined into HASH JOIN OUTER in most execution plan formats.

The operations are indented to convey parent–child relationships. This indentation

is tricky, and takes a while to get used to, but it is vital information. Indentation tells us

which algorithms are executed first, and how the rows are passed between operations.

Changing even a single space in the operation line can radically alter the meaning of an

execution plan.

 Execution Plans and Recursive SQL
Most operations consume rows, do something with them, and then produce rows. For

example, a hash join consumes rows from two different child sources, combines them,

and then produces a joined set of data for a parent operation. That intermediate result

set might be joined with something else.

The nested structure of an execution plan mirrors the way we should build SQL

statements with small, nested, inline views. Just like building logical SQL statements,

understanding an execution plan is about understanding small sets of operations,

combining them into a new set, and repeating.

But execution plans aren’t always that simple. There may be a significant amount

of work not shown in the execution plan. Sometimes we have to tune a recursive SQL

statement – a SQL statement that is generated to support our SQL statement. Recursive

SQL (not to be confused with recursive queries that use CONNECT BY) can be generated in

many ways: custom PL/SQL functions with embedded SQL, triggers with SQL, metadata

Chapter 17 Understand sQL tUning theories

420

queries needed to parse the query or build the execution plan, remote objects handled

by a remote database, etc. (But a view is not a recursive SQL statement. The query in a

view will be added to our SQL statement as if we copied and pasted the text.)

If we’re using advanced tuning tools like DBMS_SQLTUNE.REPORT_SQL_MONITOR, we

can tell there’s slow recursive SQL if the “Activity (%)” values do not add up to 100%.

Finding the slow recursive queries can be done by looking at views like V$SQL, and is

explained in the next chapter. Luckily, those recursive queries tend to stick out, and are

easy to catch when we know what to look for.

 Why Operations Matter
To understand execution plans we need to know what operations and operation

options are available. As discussed in the previous chapter, different algorithms are

optimal in different contexts. We need to know what the algorithms are and when they

should be used.

This section lists the most common operations and operation options, and when

they should be used. There are many guidelines, but we don’t always have precise

instructions. For example, hash joins work well for a large amount of data, and nested

loops work well for a small amount of data. But the precise definition of “large” and

“small” depend on many factors.

The science of SQL tuning is getting precise measurements and finding which

operation is using the most time, and which operations would work better. But we don’t

always have time for science; the art of SQL tuning is much faster. Eventually you will be

able to look at an execution plan and just know that an operation doesn’t belong. You’ve

already been introduced to many of the operations listed in this chapter and been given

advice for when they are useful. But there’s a lot of information, and it will take a while to

build an intuition for bad execution plans.

The operation names and options in this chapter were generated based on my

experience, and the most popular combinations in the 350 databases I have access to.

But this list is not comprehensive, and you will likely see different operations depending

on what features you use.

The following SQL statements can help you see what operations are used and

available on your systems.

--Recently used combinations of operations and options.

select operation, options, count(*)

Chapter 17 Understand sQL tUning theories

421

from v$sql_plan

group by operation, options

order by operation, options;

--All available Operation names and options. (Run as SYS.)

select * from sys.x$xplton;

select * from sys.x$xpltoo;

 First Operations
The first operation in an execution plan is just a copy of the command name, and doesn’t

have much meaning. But the first operation is a useful placeholder for information that

sums up for the entire plan. For example, the cost for the first operation is the total cost

for the entire statement. (Although there are exceptions where the first line does not

accurately represent the cost.)

These are the most common top-level operations, which need no further

explanation: CREATE INDEX STATEMENT, CREATE TABLE STATEMENT, INSERT STATEMENT,

DELETE STATEMENT, MERGE STATEMENT, MULTI-TABLE INSERT, SELECT STATEMENT, and

UPDATE STATEMENT.

From the preceding list, only the INSERT operations are interesting. INSERT

statements have a child operation that indicates whether the INSERT used direct-path

writes or conventional writes. LOAD TABLE CONVENTIONAL indicates that a normal INSERT

was used, which will be recoverable but slow. LOAD AS SELECT indicates that a direct-

path write was used, which is non-recoverable but fast.

 Joining
There are many join operations:

 1. HASH JOIN: Builds a hash table of the smaller row source, then

probes that hash table for each row of the larger row source. Best

operation for joins that return a large percentage of rows. Requires

an equality condition.

 2. MERGE JOIN: Sorts both row sources and then joins them. Best

operation for joins that return a large percentage of results but do

not use an equality condition.

Chapter 17 Understand sQL tUning theories

422

 3. NESTED LOOPS: For each row in one row source, search for a

match in the other row source. Best operation for joins that return

a small percentage of results. One or both of the input row sources

should be come from an index access.

 4. JOIN FILTER: A bloom filter that can be used to quickly eliminate

rows before joining. Only allowed as a child operation of a hash

join. (There’s not much we can do to control this operation.)

The options are especially important, and they can significantly change the behavior

of join operations. Remember that not all options are valid for all operations.

 1. ANTI: Anti-joins return rows where a value in one row source

does not exist in another row source. Used with NOT IN and NOT

EXISTS conditions. This operation stops as soon as a match is

found, so it is faster than a normal full table scan.

 2. SEMI: Semi-joins return rows where a value in one row source

matches at least one value from another row source. Used with IN

and EXISTS conditions. This operation stops as soon as a match is

found, so it is faster than a normal full table scan.

 3. BUFFERED: Intermediate results that are written to temporary

tablespace. Rows can flow between many levels of an execution

plan at the same time, but these synchronization points require

retrieving all rows before moving to the next operation.

 4. OUTER/FULL OUTER/RIGHT OUTER: Performs an outer join

instead of an inner join. An outer join isn’t directly slower than

an inner join. But we should not use outer joins by default, since

outer joins provide less optimization opportunities than inner

joins.

 5. CARTESIAN: Combines every row from one source with every

row from another source. Also known as cross joins, this option

is only valid for MERGE JOIN. This option is a red flag in execution

plans. Unless we have an extremely small number of rows this

option may lead to horrible performance.

Chapter 17 Understand sQL tUning theories

423

 Table Access
Tables are the most important data structure in Oracle. The most important table access

operations are

 1. TABLE ACCESS: Self-explanatory.

 2. MAT_VIEW ACCESS: Materialized views store the results of a

query as a table. The underlying data structure is identical to a

table, it just has a different name.

 3. FAST DUAL: DUAL is a special table used for generating data.

Reading from DUAL in modern versions of Oracle never requires

reading from disk.

 4. FIXED TABLE: Similar to reading from DUAL, Oracle’s dynamic

performance views are populated by memory structures. Reading

from V$ views does not require disk access.

 5. EXTERNAL TABLE ACCESS: Reads from operating system files to

create a table on the fly.

The followingare the options for table access operations:

 1. FULL: Full table scans are the fastest way to read a large

percentage of data from a table, as they can take advantage of

multi-block reads.

 2. BY INDEX ROWID: Quickly accesses a row’s physical location,

based on a ROWID generated by an index. Indexes may store data

used for filtering, but not necessarily the data being projected.

Each index entry contains a ROWID that can be used to quickly

lookup the data in the table.

 3. BY USER ROWID: Quickly accesses a row’s physical location,

based on a ROWID stored in a table or a literal. This operation is

perhaps the fastest way to access data, so storing and retrieving

data by ROWID can be helpful. On the other hand, rows can move

locations when data changes, so be careful when storing a ROWID.

Chapter 17 Understand sQL tUning theories

424

 4. SAMPLE: Returns a random sample of data from a table.

 5. CLUSTER: Clustered tables can store two tables pre-joined

together. (In practice this option is rarely used anymore, other

than a few dictionary tables.)

 Index Access
The most common index operations are

 1. INDEX: B-tree indexes are a vital data structure for performance.

Indexes are generally used for quickly retrieving a small amount of

data from a large table.

 2. BITMAP INDEX/AND/OR/MINUS/CONVERSION: Bitmaps are

ideal for low- cardinality columns, like statuses. Multiple AND and

OR operations can be quickly performed by combining bitmap

indexes. B-tree indexes can be converted into bitmaps for quick

comparisons.

 3. DOMAIN INDEX: Custom index types. These operations are rare

unless we’re using advanced options like Oracle Text.

 4. FIXED TABLE (FIXED INDEX): Dynamic performance views can

also have indexes that only reside in memory.

Most of these index options only apply to B-tree indexes:

 1. RANGE SCAN: The most common type of index access. This

option efficiently traverses the B-tree and can quickly return a

small percentage of rows.

 2. UNIQUE SCAN: Similar to range scan, but stops after it finds one row.

 3. FAST FULL SCAN: Reads the index like a skinny version of the

table and can use fast multi-block reads. Good option if we need

to retrieve a large percentage of rows, but from only a small

number of columns.

 4. FULL SCAN: Reads data from the index in order. Reading data in

a specific order requires slower single-block reads, but provides

presorted results.

Chapter 17 Understand sQL tUning theories

425

 5. SCAN (MIN/MAX): Similar to a range scan, but only needs to

traverse the first or last path of a B-tree to get the minimum or

maximum values. (This option has a child operation named

FIRST ROW.)

 6. SKIP SCAN: Occurs when the leading column of a multicolumn

index cannot be used. This option is inefficient and is a sign that

we may want to create another index.

 Grouping and Sorting
Grouping and finding distinct values can be done with either the HASH or SORT

operations. Those operations can have an option of either GROUP BY or UNIQUE. Hashing

is usually faster than sorting, but in rare cases we may need to force the optimizer’s

decision with a hint like /*+ NO_USE_HASH_AGGREGATION */.

The SORT operation can also be used for options like AGGREGATE (which is used to find

the minimum or maximum value without grouping), CREATE INDEX, JOIN (to order the

results before a MERGE JOIN), and ORDER BY.

Other than the AGGREGATE option, we should try to avoid these slow SORT operations.

However, sorting can be fast if it includes the option STOPKEY. STOPKEY means only the

first N rows are returned, perhaps because of a ROWNUM condition.

Similar to sorting and hashing, there is also a WINDOW operation, used for analytic

functions. Analytic functions are powerful and fast, and are usually a much better option

than writing self-joins. But watch out for nested WINDOW operations. If multiple analytic

functions use different PARTITION BY or ORDER BY clauses, there will be a WINDOW SORT

operation for each one. All that sorting can get expensive.

 Set Operators
There are four set operators we can use to combine queries: INTERSECT, MINUS, UNION,

and UNION ALL. We might expect each command to have a separate operation, but those

four commands only map to three execution plan operations: INTERSECTION, MINUS,

and UNION-ALL. The UNION operator is converted to a UNION ALL operation, plus a SORT

UNIQUE child operation. That extra sorting operation is why we should always use a UNION

ALL if we know the values are already distinct.

Chapter 17 Understand sQL tUning theories

426

Oracle may transform some queries into set operations. For example, statements

with WHERE clauses and OR conditions can be converted into multiple queries combined

with a set operation. The CONCATENATION operation is sometimes used, and works similar

to UNION ALL.

 Optimizer Statistics
Optimizer statistics are so vital to performance that Oracle has several operations

dedicated to gathering them:

 1. STATISTICS COLLECTOR: Gathers optimizer statistics in the

middle of an execution plan. This information is used for adaptive

plans, a new feature in 12c. With adaptive plans, a SQL statement

can dynamically change if the actual values are wildly different

than the expected values.

 2. APPROXIMATE NDV: Gathers a distinct count in a single pass,

without sorting or hashing.

 3. OPTIMIZER STATISTICS GATHERING: Gathers optimizer

statistics while the table is being created, a new feature in 12c.

If statistics only requires a single pass, and we’re loading a large

amount of data, we might as well gather the stats at the same time.

Gathering optimizer statistics can be slow, so we want to be aware of the preceding

operations. If statistics are already gathered we don’t want to duplicate the effort later. Or

if the table doesn’t need statistics, we can suppress those operations with hints.

 Parallel
Parallelism is a great opportunity to significantly improve the performance of large SQL

statements. Optimizing parallelism is tricky and requires careful attention to the syntax

and execution plan. The following are the main parallel operations:

 1. PX BLOCK: Reads blocks in parallel.

 2. PX SEND: Sends the blocks up the execution plan to the next step.

The option determines how the blocks are sent, an important

decision. For small results a BROADCAST option may work well – it

Chapter 17 Understand sQL tUning theories

427

sends all rows to all parallel servers. For large results a HASH option

may work well – it divides the rows among the parallel servers.

(There are several other options not discussed here.)

 3. PX RECEIVE: Receives rows from a PX SEND.

 4. PX COORDINATOR: The final parallel operation that coordinates

and controls the child parallel operations.

The following example demonstrates how picky the syntax can be, and how subtle

execution plan differences can be significant. First, let’s look at a statement where every

step is run in parallel, taking full advantage of Oracle parallelism.

--Fully parallel SQL statement.

alter session enable parallel dml;

explain plan for

insert into engine

select /*+ parallel(8) */ * from engine;

select * from table(dbms_xplan.display);

--- ... -------------------

|Id|Operation | ... |IN-OUT|PQ Distrib|

--- ... -------------------

| 0|INSERT STATEMENT | ... | | |

| 1| PX COORDINATOR | ... | | |

| 2| PX SEND QC (RANDOM) | ... | P->S |QC (RAND) |

| 3| INDEX MAINTENANCE | ... | PCWP | |

| 4| PX RECEIVE | ... | PCWP | |

| 5| PX SEND RANGE | ... | P->P |RANGE |

| 6| LOAD AS SELECT (HYBRID TSM/HWMB)| ... | PCWP | |

| 7| OPTIMIZER STATISTICS GATHERING | ... | PCWP | |

| 8| PX BLOCK ITERATOR | ... | PCWC | |

| 9| TABLE ACCESS FULL | ... | PCWP | |

--- ... -------------------

Note

 - Degree of Parallelism is 8 because of hint

Chapter 17 Understand sQL tUning theories

428

The following code has a small change. Instead of using the hint PARALLEL(8), the

code uses the hint PARALLEL(ENGINE, 8). Spend a minute to compare the execution

plans between the previous example and the following example.

--Partially parallel SQL statement.

alter session enable parallel dml;

explain plan for

insert into engine

select /*+ parallel(engine, 8) */ * from engine;

select * from table(dbms_xplan.display);

----------------------------- ... -------------------

|Id|Operation | ... |IN-OUT|PQ Distrib|

----------------------------- ... -------------------

| 0|INSERT STATEMENT | ... | | |

| 1| LOAD TABLE CONVENTIONAL| ... | | |

| 2| PX COORDINATOR | ... | | |

| 3| PX SEND QC (RANDOM) | ... | P->S |QC (RAND) |

| 4| PX BLOCK ITERATOR | ... | PCWC | |

| 5| TABLE ACCESS FULL | ... | PCWP | |

----------------------------- ... -------------------

Note

 - Degree of Parallelism is 8 because of table property

 - PDML disabled because object is not decorated with parallel clause

 - Direct Load disabled because no append hint given and not executing in

parallel

The differences are caused by the hint type. Parallelism has statement-level and

object-level hints. We almost always want to use statement-level hints. If we’re going to

run one operation in parallel, we might as well run all operations in parallel. The hint

PARALLEL(8) tells Oracle to run everything in parallel. The hint PARALLEL(ENGINE, 8)

tells Oracle to only parallelize the read from the ENGINE table.

Chapter 17 Understand sQL tUning theories

429

In the first example, when we use a statement-level hint, both the INSERT and the

SELECT operations are run in parallel. We can tell because there’s a “PX” operation above

the (poorly named) LOAD AS SELECT operation. And the LOAD AS SELECT operation also

means the first example is using a direct path load. Whereas the second example uses a

slower LOAD TABLE CONVENTIONAL.

Also look at the new column in the execution plans named “IN-OUT”. For parallel

operations we want to use parallel servers for both the producers and the consumers

of the rows. The value P->S means that the parallel results are compressed into a single

server, and the next steps are run in serial. We want to see P->S as late as possible, which

means we want to see it near the top of the execution plan. In the second, slow example,

the P->S happens in the middle.

 Partition
The partition operation names are self-explanatory and match the partition types. For

example, it’s obvious what PARTITION HASH, PARTITION LIST, PARTITION RANGE, and

PARTITION REFERENCE are for.

The relevant options aren’t too complicated, but they are important and worth

briefly discussing.

 1. ALL: Retrieves all partitions from a table. This option means

that partitioning isn’t helping at all. We may need to check our

conditions and ensure that we’re filtering by the partitioned

columns.

 2. SINGLE: Retrieves data from only a single partition, which means

partition pruning is probably working optimally.

 3. ITERATOR: Retrieves data from a range of partitions, which

means partition pruning is working, but not necessarily optimally.

Similar to parallel operations, partitioning is complex and has a few special columns

in execution plans. The columns “Pstart” and “Pstop” list the partition numbers being

used. Those numbers tell us how well the table is being pruned to a smaller size.

Sometimes the value will be KEY, which means the partition number depends on a

variable or a lookup from another table.

Chapter 17 Understand sQL tUning theories

430

Partition operations can also be stacked, if the table is subpartitioned. Both

operations are named PARTITION, but the child operation is really for the subpartitions.

The following example demonstrates what a simple partition execution plan looks like.

(The example uses an unusual system table because that table is already subpartitioned,

and simply reading the table does not require a partitioning option license.)

--Partition execution plan example.

explain plan for select * from sys.wri$_optstat_synopsis$;

select * from table(dbms_xplan.display);

------------------------------- ... -----------------

| Id | Operation | ... | Pstart| Pstop |

------------------------------- ... -----------------

| 0 | SELECT STATEMENT | ... | | |

| 1 | PARTITION LIST SINGLE| ... | 1 | 1 |

| 2 | PARTITION HASH ALL | ... | 1 | 32 |

| 3 | TABLE ACCESS FULL | ... | 1 | 32 |

------------------------------- ... -----------------

In the preceding output we can see two PARTITION operations, one for partitioning

and one for subpartitioning. On my system the table has one partition and 32

subpartitions. All partitions are read since the query does not filter the table, so the Pstart

and PStop values match the number of partitions and subpartitions.

 Filter
FILTER is an important and misunderstood operation. Unfortunately the word “filter”

has two different meanings in execution plans. Most frequently a “filter” is a condition

applied to limit the results, and is listed in the “Predicate Information” section of an

execution plan. But a FILTER operation is quite different. A FILTER operation also applies

a condition, but the result of that condition can dynamically change the execution plan.

A good example of a FILTER operation happens when a query is based on a form. If a

user enters a value for an input, the query should only return rows that match that value.

If a user leaves a value empty for an input, the query should return all rows. Matching

one value is a good candidate for an index, and matching all values is a good candidate

for a full table scan. With the FILTER operation, the execution plan can have both paths

and choose the right one at run time.

Chapter 17 Understand sQL tUning theories

431

Notice how the following execution plan is really two separate plans put together.

The fastest path will be chosen at run time.

--Filter example.

explain plan for

select *

from launch

where launch_id = nvl(:p_launch_id, launch_id);

select * from table(dbms_xplan.display(format => 'basic'));

--

| Id | Operation | Name |

--

| 0 | SELECT STATEMENT | |

| 1 | VIEW | VW_ORE_D33A4850 |

| 2 | UNION-ALL | |

| 3 | FILTER | |

| 4 | TABLE ACCESS BY INDEX ROWID| LAUNCH |

| 5 | INDEX UNIQUE SCAN | LAUNCH_PK |

| 6 | FILTER | |

| 7 | TABLE ACCESS FULL | LAUNCH |

--

The preceding trick does not happen with all semantically equivalent versions of the

query. For example, the FILTER operation disappears if we replaced WHERE LAUNCH_ID

= NVL(:P_LAUNCH_ID, LAUNCH_ID) with WHERE LAUNCH_ID = :P_LAUNCH_ID OR :P_

LAUNCH_ID IS NULL. Searching for one or all values is a scenario where we need to use

cryptic code to ensure the best execution.

 Other
Many operations are straightforward and don’t tell us any actionable information. For

example, the SEQUENCE operation is self-explanatory. But that doesn’t mean we can

ignore those operations; if a SEQUENCE operation is slow then we should examine the

sequence settings, like the cache size.

Chapter 17 Understand sQL tUning theories

432

Some operations are repeated multiple times, making it difficult to monitor the

progress of SQL statements. For example, a NESTED LOOPS join may call child operations

a large number of times. Repetition can also happen with operations like CONNECT BY

and RECURSIVE WITH PUMP. Hierarchical queries that call themselves are difficult to

estimate and can cause performance problems. The progress estimates provided by

V$SESSION_LONGOPS are meaningless if we don’t know how many times an operation will

repeat.

REMOTE operations also deserve special attention. Joining data on the same database

is hard enough, pulling information across database links is powerful but potentially

slow.

Operations may help explain how our query was transformed into a different query

before execution. The VIEW operation is just a logical grouping of operations, and may be

an inline view or a schema object view. The operation VIEW PUSHED PREDICATE is telling

us that one of the predicates in the main query was pushed into one of the subqueries.

Predicate pushing is usually a good thing, but we want to know when our query is being

rewritten in case we need to stop that transformation.

A single operation can represent a call to another programming language, which

could represent an almost infinite amount of work. XMLTABLE EVALUATION, XPATH

EVALUATION, JSONTABLE EVALUATION, and MODEL represent languages embedded in

SQL. The most common non-SQL operation is COLLECTION ITERATOR, which represents

rows being generated by a PL/SQL table function. We should be skeptical of execution

plans that involve non-SQL languages. The optimizer does a great job of estimating

times and building execution plans for declarative code. But the optimizer is almost

completely blind to how procedural code will work, and has to make huge guesses.

TEMP TABLE TRANSFORMATION occurs when a common table expression is turned into

a temporary table. If the common table expression is called more than once it may be

cheaper for Oracle to store the results in a temporary table than to re-run the query.

 Cardinality and Optimizer Statistics (Building
Execution Plans I)
Cardinality and optimizer statistics are the keys to understanding how Oracle decides

which operations to use in an execution plan. Cardinality refers to the number of items,

like the number of rows or the number of distinct values. Optimizer statistics are what

Oracle uses to estimate the cardinality.

Chapter 17 Understand sQL tUning theories

433

The tough part of building execution plans is deciding when one set of algorithms

and data structures outperform another. The graphs in Chapter 16 used the generic

label “Input Size” for the X axis. The fastest algorithm depends on the value of the input

size. In Oracle, that input size is the cardinality. The only way to know which algorithm

performs best is to accurately estimate the cardinality.

This section tries to convince you to focus on the cardinality of execution plans, and

the importance of good optimizer statistics. The next chapter will discuss how to gather

those statistics to fix bad cardinality estimates.

 Cardinality Is Important
The word cardinality has two slightly different meanings in Oracle. Cardinality means

the number of rows returned. Cardinality can also mean the number of distinct rows

returned. A high cardinality column like a primary key has many distinct values, a low

cardinality column like a status code has few distinct values.

The following are two simple examples showing the cardinality of two drastically

different execution plans. First, let’s find all the launches that took place at the White

Sands Missile Range, an important military testing area in New Mexico. (For brevity, the

examples use a hard-coded SITE_ID.) White Sands is a popular launch site with 6590

launches. The optimizer estimates that White Sands has 6924 launches (but that estimate

may be different on your machine). The estimate is not perfect but it’s good enough for

Oracle to understand that this query returns a large percentage of rows from the LAUNCH

table. Therefore Oracle builds an execution plan with a full table scan.

--Full table scan example.

explain plan for select * from launch where site_id = 1895;

select * from table(dbms_xplan.display(format => 'basic +rows'));

|Id|Operation |Name |Rows |

| 0|SELECT STATEMENT | | 6924|

| 1| TABLE ACCESS FULL|LAUNCH| 6924|

Chapter 17 Understand sQL tUning theories

434

Let’s change the query to count the launches from a remote pad on Johnson Island.

This site was used for Operation Fishbowl, which can be summarized as “let’s blow up

a thermonuclear weapon in space and see what happens.” Unsurprisingly, the military

only used that launch site once. Oracle estimates the condition will return 14 rows, a

small enough percentage to warrant an index range scan.

--Index range scan example.

explain plan for select * from launch where site_id = 780;

select * from table(dbms_xplan.display(format => 'basic +rows'));

|Id|Operation |Name |Rows |

| 0|SELECT STATEMENT | | 14|

| 1| TABLE ACCESS BY INDEX ROWID BATCHED|LAUNCH | 14|

| 2| INDEX RANGE SCAN |LAUNCH_IDX2| 14|

Without us doing anything Oracle correctly knows when to use a full table scan and

when to use an index range scan. Most of the time everything works out fine, but we

can’t take this magic for granted. We need to understand exactly what’s going on so we

can fix things when the system breaks.

As you can imagine, the examples can get much more complicated than this. Oracle

needs to understand the cardinality (distinctness) of the columns to estimate the final

cardinality (the number of rows returned). Estimating a single equality condition is tricky

enough, but our SQL statements also have ranges, compound conditions, etc.

Luckily, when we focus on cardinality, there are a bunch of things we don’t need

to worry about. We don’t need to worry about the time it takes to execute functions or

expressions. If we were doing scientific programming we might look for small loops

and try to find tiny performance differences between functions like SUBSTR versus

REGEXP_SUBSTR. In database programming, the time to process data in the CPU is almost

always irrelevant compared to the time it takes to read the data. We need to worry about

the algorithms used to read and process our data, not the speed of small function calls.

(Although there are exceptions; if we call a custom PL/SQL function a billion times we

need to worry about context switching and the performance of the function.)

Chapter 17 Understand sQL tUning theories

435

Comparing estimated cardinalities with actual cardinalities is the best way to know if

a plan is good. (The simple techniques for finding the actual cardinalities are discussed

in the next chapter.) If all the relevant objects are available, such as indexes, and the

estimates are accurate, there’s a good chance the plan is optimal. Part of SQL tuning

is finding out when and why the cardinality estimate is wrong. Another part of SQL

tuning is thinking about better operations and how to make them available. Creating

better paths for the optimizer requires understanding the available operations and

understanding all the Oracle features and data structures that enable them.

 Cardinality Differences
It’s important to understand when cardinality differences matter. In the preceding

examples, both estimates were wrong but were still good enough.

It can be useful to think of cardinality estimates as only returning two possible

values: big or small. To check if Oracle chose the right value, the percent difference

is more important than the absolute difference. In the first example, the cardinality

estimate was wrong by an absolute difference of 334 rows (6924 estimate – 6590 actual).

But 334 out of 6590 isn’t so bad. In the second example, the cardinality estimate was

wrong by an absolute difference of 13 rows (14 estimate – 1 actual).

The second example was off by an order of magnitude, but the optimizer still made

a good decision. We need to adjust our expectations for the optimizer estimates. There’s

no precise definition of how “wrong” the result can be before it matters. But as a rule

of thumb, don’t worry about the estimates until they’re off by more than an order of

magnitude.

Think about the graphs in Chapter 16, which compared different algorithm run

time complexities like O(N) versus O(M*LOG(N)). There is a large difference between the

graphs at the extremes, but there’s also a large area in the middle where the performance

is about the same. Database algorithms are not highly sensitive – a small difference in

cardinality won’t generally cause huge problems.

But don’t think this large range of acceptable values means cardinality estimates are

easy. Cardinality mistakes are multiplicative, not additive. If one estimate is off by 10x,

and another estimate is also off by 10x, they can combine to off by 100x. Luckily, to fix

this problem we may only need to fix one of the bad estimates. Oracle can make good

decisions as long as the estimates are in the ballpark.

Chapter 17 Understand sQL tUning theories

436

 Cost Doesn’t Matter
The optimizer is officially called the cost-based optimizer. Oracle generates an internal

number, a cost, for each operation. I removed the cost from most of the execution plans

displayed in this book because the cost is usually worthless for tuning.

The cost is certainly helpful internally to Oracle. And we can use the cost to quickly

compare the resource consumption an execution plan will use. But the cost is just

an estimate. And the cost doesn’t always meaningfully add up in execution plans. It’s

pointless for us to look at an execution plan’s cost and arbitrarily say “oh, that number is

too much.”

It’s more meaningful to measure SQL statements by the time they take to run. The

time estimate column is more useful than the cost, even though the time estimate is

often wildly inaccurate. The next chapter shows how to measure actual time, instead

of merely estimating time. With the actual time we can tell which statements and

operations are truly the most expensive, and we won’t have to guess.

 Optimizer Statistics
Optimizer statistics are the key to generating good cardinality estimates. In theory, due to

the halting problem, it is impossible to always accurately predict run times. In practice,

with the right statistics, the optimizer can almost always generate useful predictions. The

following list includes all the different types of optimizer statistics, roughly ordered by

importance.

 1. Table: Number of rows, and the size of the table in bytes and

blocks. Cardinality is still the most important metric, but the size

of the table in bytes is useful for estimating the time to read the

data, especially in a data warehouse.

 2. Column: Number of distinct values, nulls, high and low values,

and column usage information. Column usage is important

because the optimizer won’t gather histograms on a column that’s

never used.

 3. Histogram: Detailed information about the most popular values

of each column. Histograms were helpful in our previous LAUNCH

example because most SITE_IDs only have a few rows, but a few

SITE_IDs have many rows.

Chapter 17 Understand sQL tUning theories

437

 4. Index: Number of B-tree levels, rows, distinct values, and clustering

factor (which can be used to tell us how efficient an index is).

 5. Partition: Table, column, histogram, and index statistics are also

generated for each partition.

 6. Extended statistics: Selectivity of expressions or combinations of

columns.

 7. Temporary tables: Similar to regular tables, but stats can be

generated for global temporary, private, or materialized common

table expressions. Since 12c, global temporary table statistics can

be per session or global. Getting these statistics right can be tough

since the data changes so frequently.

 8. System: I/O and CPU performance. This information can help

to produce more meaningful time estimates. And knowing the

difference between single-block read time and multi-block read

time can help more accurately estimate differences between index

range scans and full table scans. Useful information in theory, but

rarely used in practice.

 9. SQL plan directives: New 12c feature to automatically record

statistics about cardinality mistakes for expressions and joins,

and adjust estimates the next time. Controlled by parameters and

enabled by default in 12.1, but disabled by default in 12.2 and 18c.

 10. SQL profiles: Contains information to modify estimates for

a specific SQL statement. SQL Profiles contain hints that can

improve estimates or force plan changes.

 11. User defined: Procedural code can have custom statistics

information using ASSOCIATE STATISTICS or Oracle data cartridge

interface.

 12. Inline view: Through hints like CARDINALITY we can create fake

estimates for inline views.

As we should expect, almost all of the preceding information can be found in the

data dictionary. Statistics data is usually stored along with the main metadata tables,

such as DBA_TABLES, DBA_TAB_COLUMNS, DBA_INDEXES, etc.

Chapter 17 Understand sQL tUning theories

438

 Optimizer Statistics Example
Understanding exactly where the cardinality estimates come from can be difficult. We

rarely need to know the precise details about how an execution plan was generated.

But in case we ever need to learn those details, and to help demystify the optimizer, this

section includes a simple example.

Previously, we examined the execution plan of this query: SELECT * FROM LAUNCH

WHERE SITE_ID = 1895. The execution plan estimated the query would return 6924

rows. But where did the number 6924 come from? We can trace the execution plan

generation and discover exactly how that estimate was derived.

The following commands enable an optimizer trace, and then find the location of the

trace file. Finding trace file can be tricky – multiple files are generated at the same time

and we need to access the server file system.

--Generate an optimizer trace file:

alter session set events='10053 trace name context forever, level 1';

select * from launch where site_id = 1895;

alter session set events '10053 trace name context off';

--Find the latest .trc file in this directory:

select value from v$diag_info where name = 'Diag Trace';

The trace file is huge and full of cryptic numbers and abbreviations. Find the section

with information about the SITE_ID column. The numbers will be different in your file,

but the math should work out the same way. The followingis the relevant section of the

trace file from my database:

...

 Column (#12): SITE_ID(NUMBER)

 AvgLen: 4 NDV: 1579 Nulls: 0 Density: 0.000195 Min: 0.000000 Max: 2.000000

 Histogram: Hybrid #Bkts: 254 UncompBkts: 5552 EndPtVals: 254

 ActualVal: yes

 Estimated selectivity: 0.098163 , endpoint value predicate, col: #12

 Table: LAUNCH Alias: LAUNCH

 Card: Original: 70535.000000 Rounded: 6924 Computed: 6923.914805

Non Adjusted: 6923.914805

...

Chapter 17 Understand sQL tUning theories

439

We can recreate the final estimate with the following equations. (The number 545 is

not in the trace file for some reason, but will be explained soon.)

Selectivity = Number of Sampled Values / Number of Sampled Rows

0.098163 = 545 / 5552

Estimated Cardinality = Total Actual Rows * Selectivity

6924 = 70535 * 0.098163

All of the relevant numbers can also be found in the data dictionary. The following

query shows that SPACE.LAUNCH.SITE_ID has a hybrid histogram, and the histogram was

built based on a 5552 row sample, the same number we saw in the trace file.

--Column statistics for SPACE.LAUNCH.SITE_ID.

select histogram, sample_size

from dba_tab_columns

where owner = 'SPACE'

 and table_name = 'LAUNCH'

 and column_name = 'SITE_ID';

Histogram SAMPLE_SIZE

--------- -----------

HYBRID 5552

Histograms can have no more than 254 buckets. Each bucket includes information

about a range of values, as well an endpoint count for the most popular values. SITE_ID

1895 is a popular value, and is the endpoint of a bucket with a count of 545, the number

that was missing from the trace file.

--Histogram bucket for 1895.

select endpoint_repeat_count

from dba_histograms

where owner = 'SPACE'

 and table_name = 'LAUNCH'

 and column_name = 'SITE_ID'

 and endpoint_value = 1895;

ENDPOINT_REPEAT_COUNT

 545

Chapter 17 Understand sQL tUning theories

440

Playing optimizer detective is painful; if you got lost in the preceding trace files and

queries there’s no need to go back and study them further. The point of this exercise

is to show that generating estimates requires many optimizer statistics. If we need to,

we can use tracing and the data dictionary to completely understand how estimates

are generated. In the next chapter we’ll learn how to change those values to get better

execution plans.

 Transformations and Dynamic Optimizations
(Building Execution Plans II)
When building execution plans Oracle is not limited to precisely the query we wrote, and

is not limited to only the information available at one point in time. Oracle can rewrite

our queries with transformations. And Oracle can make our SQL run progressively faster

with dynamic optimizations.

 Transformations
Oracle does not have to run the pieces of a SQL statement in the exact order they are

written. Oracle can transform the query into many different, but logically equivalent

versions, to build the optimal execution plan.

For the most part these transformations are cool magic tricks that happen behind

the scenes. But it’s important to know what Oracle is capable of. If SQL statements really

were executed exactly as is then we would be rightfully worried about using multiple

inline views in large SQL statements. We need to know when Oracle is making a bad

transformation so we can prevent it. We need to know when Oracle is not performing a

transformation so we can compensate for it with weird or repetitive code.

Transformations only occur within a single SQL statement. Although there are other

features where one SQL statement may indirectly affect another: SQL plan directives,

statistics gathering, and block caching can cause one query to indirectly improve the run

time of another query.

The most common transformations don’t have a specific name. Oracle frequently

changes the order of items in a SQL statement. Predicates and joins are trivially re-

ordered. The join syntax is converted from ANSI syntax to the traditional syntax, and

sometimes the other way around. DISTINCT operations can occasionally be pushed

sooner or later in an execution plan.

Chapter 17 Understand sQL tUning theories

441

OR-expansion can happen to SQL statements with multiple OR conditions. The

statement can be broken into multiple pieces and then stitched together with UNION ALL.

Predicate pushing is when predicates in the outer query are pushed into the inner

query. This important transformation can explain why performance significantly

changes when two queries are put together. The following code is a trivial example of

predicate pushing:

--Trivial example of predicate pushing.

select * from (select * from launch) where launch_id = 1;

There is no need for Oracle to retrieve all the rows from LAUNCH in the inline view,

and then filter the rows with the predicate. Instead, Oracle rewrites the SQL statement

and directly applies the predicate to the table. By transforming the statement Oracle can

then use an index unique scan to quickly retrieve rows.

View merging allows the optimizer to move tables in and out of inline views. Oracle

may not need to join two large tables together if their results are going to be joined to a

smaller table later. For example, in the following code, Oracle does not need to directly

join the relatively large tables SATELLITE and LAUNCH. Instead, Oracle can first join the

smaller tables SITE and LAUNCH. That first join generates a tiny number of rows. Then

those small, intermediate results can be efficiently joined to the larger SATELLITE table.

--Simple view merging example.

select *

from

(

 select *

 from satellite

 join launch using (launch_id)

) launch_satellites

join site

 on launch_satellites.site_id = site.site_id

where site.site_id = 1;

Subquery unnesting happens when Oracle rewrites a correlated subquery as a join.

If the main query returns a small number of rows, and the subquery is fast, it makes

sense to run the subquery for each row. But if the main query returns a large number

Chapter 17 Understand sQL tUning theories

442

of rows, or the subquery is slow, it makes sense to use a regular join operation. In the

 following example, there are many rows in LAUNCH and SATELLITE, and Oracle will

almost certainly convert the query into a regular join.

--Simple unnesting example. (Launches with a satelite.)

select *

from launch

where launch_id in (select launch_id from satellite);

There are many other available transformations. If we want to see the final

version of our SQL statement we can look in a 10053 trace, like the trace file that was

generated a few pages earlier. If we open that trace file and search for “Final query

after transformations” we will find the final version of our query. Unfortunately, the

transformed versions of our queries are painful to read. Luckily, we don’t really care

about the final version of our code, we only care about the way it runs. The execution

plan tells us how the transformed SQL statement is executed, which is what really

matters.

Transformations are an interesting topic but we don’t need to fully understand

transformations to use them. Being aware of transformations helps because sometimes

we need to make our own transformations. Sometimes rewriting a query to use a

different but equivalent syntax will bring unexpected performance boosts. If predicate

pushing doesn’t occur then we may need to repeat predicates. If subquery unnesting

doesn’t happen we may need to manually convert subqueries into joins.

 Adaptive Cursor Sharing and Adaptive Statistics
Execution plans can change at run time depending on bind variables, previous runs, and

information gathered from other queries. We got a taste of Oracle’s dynamic execution

plan abilities with the FILTER operation. Recent versions of Oracle have introduced

many new dynamic optimizations.

Adaptive cursor sharing lets a SQL statement have multiple execution plans

depending on bind variables. Think about the previously used query: SELECT * FROM

LAUNCH WHERE SITE_ID = 1895. That query is not entirely realistic; in practice we would

almost certainly use a bind variable instead of hard-coding a literal.

Chapter 17 Understand sQL tUning theories

443

If we replaced 1895 with :SITE_ID, then Oracle could peek at the bind variable

to create the first execution plan. If the relevant column data is skewed, and has a

histogram, the optimizer can make a note to check the bind variable next time. During

the next run, if the bind variable skews in a different way, Oracle can create a different

execution plan.

Adaptive statistics can change plans by gathering statistics during run time. These

features are mostly disabled in 12.2 and 18c with the parameter OPTIMIZER_ADAPTIVE_

STATISTICS defaulting to false. In a data warehouse environment, where it’s worth

spending extra time building execution plans, it might be worth enabling these features.

Dynamic statistics, also known as dynamic sampling, can make up for missing or

inadequate optimizer statistics. Before a SQL statement is run, if statistics are missing,

dynamic sampling gathers statistics based on a small number of blocks.

Dynamic sampling is important, and can be tricky to tune through the parameter

OPTIMIZER_DYNAMIC_SAMPLING. But we almost certainly want this feature enabled, so

we can at least gather dynamic statistics when the table is completely missing statistics.

Because of dynamic sampling, missing statistics are better than bad statistics. Oracle can

compensate for missing statistics, but bad statistics will be believed. Dynamic sampling

in the Note section of an execution plan may be a sign that we forgot to gather stats. This

phrase in an execution plan is a big red flag: “dynamic statistics used: dynamic sampling

(level=2).”

Automatic reoptimization, known in 11g as cardinality feedback, can help improve

subsequent executions of the same statement. For statements that are missing statistics

or are sufficiently complex, Oracle records the actual cardinality for different operations.

If the actual and estimated cardinalities are sufficiently different the optimizer may build

a different execution plan the second time.

SQL plan directives store statistical information about predicates. This information

can be shared among many queries. The optimizer is able to make good cardinality

estimates for simple equality and range predicates, but we shouldn’t expect the

optimizer to be able to predict complex expressions the first time they run. With SQL

plan directives the optimizer can learn from its mistakes.

Another important dynamic optimization was introduced in 12.1 – adaptive query

plans. This feature is important and will be used to illustrate advanced tuning techniques

in the next section.

Chapter 17 Understand sQL tUning theories

444

 Adaptive Query Plans
Adaptive query plans let SQL statements have multiple execution plans. Queries can

choose the best plan at run time, based on live cardinality numbers. Oracle can add

a STATISTICS COLLECTOR operation before a join. That operation records the actual

cardinality, and chooses the best plan accordingly.

Let’s create an example of adaptive query plans using a simple join between LAUNCH

and SATELLITE. The following two queries join the tables, but only for a specific launch

year. There were many launches in 1970, but none in 2050, since the data set only goes

to the year 2017. We would hope that the first query, on a popular year, would use a hash

join to deal with the large number of results. And the second query, on an unpopular

year, should use a nested loops join for the small number of results. But the way we wrote

the predicates, it’s hard for Oracle to estimate the number.

--Launches in a popular and unpopular year.

select * from launch join satellite using (launch_id)

where to_char(launch.launch_date, 'YYYY') = '1970';

select * from launch join satellite using (launch_id)

where to_char(launch.launch_date, 'YYYY') = '2050';

There are several ways we could have provided more information to the optimizer.

We could rewrite the predicate into a simpler date range, create an expression statistic,

create a function based index on the expression, etc. In 11g we would need to consider

those approaches, if the query was causing problems. But in 12c Oracle can fix the

execution plan on the fly.

For this scenario we are not going to use EXPLAIN PLAN FOR. That statement is

useful, but it has limitations. Until the query is run, Oracle doesn’t know exactly what’s

going to happen. For SQL tuning, we frequently need to find the SQL_ID of a statement.

Once we have the SQL_ID we can plug it into many different programs.

But the SQL_ID is not always trivial to find. There may be many false positives,

especially since queries on V$SQL will return the query on V$SQL. Programs that return

their own source code are called quines. Writing quines is an interesting challenge in

most programming languages. In Oracle SQL, creating quines is annoyingly easy to do,

and we need to adjust our queries to avoid them.

Chapter 17 Understand sQL tUning theories

445

The following SQL statement can be used to find the actual execution plan, for either

1970 or 2050. (To save space I commented out one of the relevant predicates, instead of

displaying the query twice.)

--Find actual execution plan of either 1970 or 2050 query.

select * from table(dbms_xplan.display_cursor(

 sql_id =>

 (

 select distinct sql_id from v$sql

 where sql_fulltext like '%1970%'

 --where sql_fulltext like '%2050%'

 and sql_fulltext not like '%quine%'

),

 format => 'adaptive')

);

Notice that the preceding query gets the actual plan, not just the estimated plan, by

using DBMS_XPLAN.DISPLAY_CURSOR instead of DBMS_XPLAN.DISPLAY. That new function

requires the SQL_ID, which is found from on a subquery against V$SQL. The query

references itself to avoid quines, with the predicate SQL_FULLTEXT NOT LIKE '%QUINE%

'. Finally, to get the adaptive query plan details we must use the argument FORMAT =>

'ADAPTIVE'. With these advanced, dynamic features, even finding the execution plans

can be tricky.

If we get the error “ORA-01427: single-row subquery returns more than one row,”

that means we have multiple queries that match the text. If that error happens we’ll need

to add additional predicates. Or we could SELECT * FROM V$SQL in a separate step to

find the SQL_ID.

The following is the execution plan for the 1970 query. Adaptive plans include all

possible operations, and use a hyphen to mark the inactive operations. Notice how the

following plan has a NESTED LOOPS operations. But those operations are inactive, and

instead a HASH JOIN is used, which is more appropriate for joins that involve a large

number of rows.

Chapter 17 Understand sQL tUning theories

446

---...-

| Id | Operation |...|

---...-

| 0 | SELECT STATEMENT |...|

| * 1 | HASH JOIN |...|

|- 2 | NESTED LOOPS |...|

|- 3 | NESTED LOOPS |...|

|- 4 | STATISTICS COLLECTOR |...|

| * 5 | TABLE ACCESS FULL |...|

|- * 6 | INDEX RANGE SCAN |...|

|- 7 | TABLE ACCESS BY INDEX ROWID|...|

| 8 | TABLE ACCESS FULL |...|

---...-

...

Note

 - this is an adaptive plan (rows marked '-' are inactive)

If we change the DBMS_XPLAN query to look for 2050 instead of 1970, we get the

following execution plan. Now the operations are reversed – NESTED LOOPS is active and

HASH JOIN is deactivated. There are no rows yet for the year 2050 so a NESTED LOOPS

operation is ideal.

---...-

| Id | Operation |...|

---...-

| 0 | SELECT STATEMENT |...|

|- * 1 | HASH JOIN |...|

| 2 | NESTED LOOPS |...|

| 3 | NESTED LOOPS |...|

|- 4 | STATISTICS COLLECTOR |...|

| * 5 | TABLE ACCESS FULL |...|

| * 6 | INDEX RANGE SCAN |...|

| 7 | TABLE ACCESS BY INDEX ROWID|...|

|- 8 | TABLE ACCESS FULL |...|

---...-

Chapter 17 Understand sQL tUning theories

447

...

Note

 - this is an adaptive plan (rows marked '-' are inactive)

Why do we need to understand dynamic optimizations? When we’re tuning we

need to know when the execution plan we’re looking at is not the real execution plan.

And if we don’t see dynamic execution plans we’re potentially missing out on great

optimizations. A lack of dynamic execution plans implies there are incorrectly set

parameters, perhaps for OPTIMIZER_FEATURES_ENABLE, COMPATIBLE, or CURSOR_SHARING.

These dynamic options are silently running in the background, improving a huge

number of statements without any intervention. But sometimes, providing additional

and more accurate information can lead to a worse execution plan. These performance

degradations are often the only time when developers and administrators directly see

these optimizations happening.

Unfortunately, it is all too common for developers and administrators to disable

features for everyone just because they encountered one minor problem with a feature.

We must resist the urge to change something at the system level when we could fix the

same problem at the query level. Dynamic optimizations don’t have to be perfect to be

useful. Do not disable dynamic optimizations unless you are sure they are causing more

than one problem.

 Clear, Simple, and Wrong
This chapter is only a brief summary of many complicated topics. Even the 793 page

SQL Tuning Guide or the 363 page Database Performance Tuning Guide do not cover

everything we need to know. My goal is merely to introduce you to multiple ways of

thinking about SQL performance concepts. Execution plans, operations, cardinality,

transformations, and dynamic optimizations build a great foundation for becoming a

SQL tuning expert.

Inevitably, we will abuse many of the concepts in this chapter and either solve

the wrong problem, or try to solve the right problem the wrong way. We’re going to

make epic mistakes and waste a lot of time. We need to appreciate the complexity of

performance tuning and have the humility to admit when we’re mistaken. For every SQL

tuning problem there is an answer that is clear, simple, and wrong.

Chapter 17 Understand sQL tUning theories

448

 Summary
We must embrace multiple ways of thinking about performance tuning and adapt a

breadth-first approach to problem solving. As developers, we dream of having that one

perfect idea for a new program, instead of having ten good ideas for mediocre programs.

We need to reverse that attitude for performance tuning and learn how to quickly try the

ten good ideas.

Chapter 17 Understand sQL tUning theories

449
© Jon Heller 2019
J. Heller, Pro Oracle SQL Development, https://doi.org/10.1007/978-1-4842-4517-0_18

CHAPTER 18

Improve SQL Performance
It’s time to use our theories and start building practical SQL tuning solutions. This

chapter starts with high-level applications and then drills down through databases and

SQL statements, until we get to operations.

Before we start looking for opportunities to improve performance we all need to

agree to do something: stop guessing. We should never have to guess what program is

slow, what database is slow, what statement is slow, or what operation is slow. No matter

what part of our technology stack we are investigating, there are multiple tools that can

easily and precisely tell us what is slow. If we ever find ourselves guessing what is slow,

we’re making a mistake.

Performance tuning must be guided by numbers, not guesses. Without objective

measures we will become afflicted with Compulsive Tuning Disorder. We must focus on

the part of the system that is slow, and we must strenuously resist the temptation to tune

things that won’t help. It’s great to refactor, and to challenge ourselves to learn more. But

when we’re confronted by an urgent performance problem we need to stay focused on

the numbers, not what merely looks bad.

We earn the right to guess after years of skepticism, measuring, and testing. It takes

a while to build a good intuition that we can use for quick breadth-first searches of

performance fixes. But experts still need the humility to know that their guesses

could be wrong.

 Application Tuning – Logging and Profiling
Most performance problems start with a slow application. Application tuning is a huge

topic and is outside the scope of this book. Even PL/SQL applications are not the main

topic of this book, but they are worth briefly discussing. We at least need to know enough

about PL/SQL to help us find our slow SQL statements.

450

 Logging
It’s important to instrument our PL/SQL programs. There are many free and powerful

logging utilities, but don’t let their complexity deter you from logging. Even creating our

own simple logging is still much better than having nothing.

This instrumentation doesn’t need to be fancy. Logging can be as simple as writing

messages and timestamps to a table whenever important processes start or stop. Or

we could use DBMS_APPLICATION_INFO to help Oracle track data in the database, or use

UTL_FILE to write data to a file system. Be careful using DBMS_OUTPUT; it’s useful for small

debugging, but it can be slow and cause overflow errors on larger systems.

For example, we could use DBMS_APPLICATION_INFO to track the resource

consumption of the examples in this chapter. We could run a PL/SQL block like this at

the beginning of each section, to set the session’s module name and action name:

--Set the session's MODULE and ACTION.

begin

 dbms_application_info.set_module

 (

 module_name => 'Chapter 18',

 action_name => 'Logging'

);

end;

/

At the end of the chapter we could compare the different sections by querying the

ACTION and MODULE columns in views and tables like V$ACTIVE_SESSION_HISTORY and

DBA_HIST_ACTIVE_SESS_HISTORY. Those two objects are discussed later in this chapter.

The following is an example of how to compare activity:

--Which sections in this chapter used the most resources.

select action, count(*) session_count

from v$active_session_history

where module = 'Chapter 18'

group by action

order by session_count desc;

Chapter 18 Improve SQL performanCe

451

Many database programs automatically set that session metadata. And Oracle’s

default logging already captures other metadata such as the user name and the machine

name. In most cases we can find performance problems without that extra session

information, but we need to think about adding extra logging information before we run

into problems.

This logging information is helpful for finding historical trends. Oracle has a wealth

of performance information, but the default information is not organized for our

applications and is not stored for very long. Instrumenting our code doesn’t take very

long and should be a part of every project.

 Profiling – DBMS_PROFILER
Oracle does not track the time for every execution of every line of code. That much

instrumentation would quickly consume all available storage. But if we setup DBMS_

PROFILER we can gather the total amount of time and number of calls to every line in our

PL/SQL program. Profiling provides better data than logging but cannot entirely replace

logging; profiling has significant overhead and should not be enabled by default.

If we’re using an IDE like PL/SQL Developer or Toad, profiling is as simple as

clicking a few buttons before starting the PL/SQL program. Other IDEs require a bit more

setup; we have to run PROFTAB.SQL from the installation directory RDBMS/ADMIN, call

DBMS_PROFILER functions to start and stop profiling, and then query the tables PLSQL_

PROFILER_DATA, PLSQL_PROFILER_RUNS, and PLSQL_PROFILER_UNITS. It is annoying that

Oracle hasn’t automated the setup process, but if we are tuning PL/SQL programs then

the setup is absolutely worth the effort.

To demonstrate profiling, let’s create a simple and slow procedure:

--Create a test procedure that runs many COUNT operations.

create or replace procedure test_procedure is

 v_count number;

begin

 for i in 1 .. 10000 loop

 select count(*) into v_count from launch order by 1;

 end loop;

Chapter 18 Improve SQL performanCe

452

 for i in 1 .. 10000 loop

 select count(*) into v_count from engine order by 1;

 end loop;

end;

/

Now we need to enable profiling and run the procedure. With the right IDE, enabling

means clicking a button to enable profiling, and then running this PL/SQL block:

--Run the procedure for profiling. (Takes about 15 seconds.)

begin

 test_procedure;

end;

/

Every IDE or query has a different display. Figure 18-1 shows the profiler report in

PL/SQL Developer. The results are sorted by descending run time, so the most important

lines are at the top. There’s even a spark bar chart to quickly show us which lines use the

most time.

Figure 18-1. DBMS_PROFILER report

The preceding profiler report tells us exactly which part of the procedure to focus on.

There’s no need to guess about what part of the program we think is slow. The run time

of line 5 is much greater than all the other lines put together. This report makes it clear

that we would be crazy to spend time optimizing anything other than line 5.

Chapter 18 Improve SQL performanCe

453

 Profiling – DBMS_HPROF
Tools like the hierarchical profiler and tracing can provide more data than DBMS_

PROFILER. I tend to avoid those two tools because they are harder to use and access.

I’d rather have easily accessible good data than poorly accessible great data. As long as

we are using tools that tell us the actual run time, instead of just guessing, we’re well

ahead of the curve. But the hierarchical profiler is gradually becoming more powerful

and easier to use, and it may complete replace DBMS_PROFILER someday, so it’s worth

discussing.

The main problem with the hierarchical profiler is that it requires elevated privileges

and server access to setup and use. The setup scripts change with every version, and the

following instructions and code will probably only work on 18c.

First we must grant access to the package:

--Grant access to DBMS_HPROF. Must be run as SYS.

grant execute on sys.dbms_hprof to &your_user;

The following code creates a table to hold the report, enables the hierarchical

profiler, and analyzes the same procedure used before, TEST_PROCEDURE.

--Create table to hold the results.

create table hprof_report(the_date date, report clob);

--Generate report.

declare

 v_report clob;

 v_trace_id number;

begin

 --Create profiler tables, start profiling.

 dbms_hprof.create_tables(force_it => true);

 v_trace_id := dbms_hprof.start_profiling;

 --Run the code to profile.

 test_procedure;

 --Stop profiling, create and store the report.

 dbms_hprof.stop_profiling;

 dbms_hprof.analyze(v_trace_id , v_report);

 insert into hprof_report values(sysdate, v_report);

Chapter 18 Improve SQL performanCe

454

 commit;

end;

/

--View the report.

select * from hprof_report;

The report contains a lot of great information but is much too wide to fit on this page.

Figure 18-2 contains only a portion of one of the many tables of data in the HTML report.

If we read the entire report it would verify what we already learned from DBMS_PROFILER

–only one line in the procedure is worth tuning. The part of the report not shown also

provides the relevant SQL_ID, which is useful.

 Application Tuning Through Batching
Batching commands is the simplest way to improve the performance of database-centric

applications. Putting commands together is usually an easy change that doesn’t touch

any of the business logic. Batching commands helps in two ways – it reduces overhead

and it provides more opportunities for the optimizer.

There can be a significant amount of overhead for database calls. The most obvious

overhead is network round-trip time. And there are many hardware and software

optimizations available when multiple commands and data are processed together;

improved cache and memory access, SIMD, fewer context switches, less parsing, etc.

Figure 18-2. Partial hierarchical profiler report

Chapter 18 Improve SQL performanCe

455

As discussed in Chapter 16, we can quickly see huge returns from the 1/N harmonic

progression of reduced overhead. We can keep our application changes simple because

we don’t need to aggregate everything to get huge performance improvements.

Combining commands in groups of 100 is 99% optimized.

Batching commands gives the optimizer more opportunities to do something

clever. Writing one large SQL statement, instead of multiple small SQL statements, lets

Oracle apply a larger number of transformations and operations. Batching also gives the

optimizer more opportunities to make a mistake – but no risk, no reward. When those

mistakes happen, instead of giving up on batching, we can apply our SQL tuning skills.

The biggest opportunities to batch commands are installation scripts, OLTP

applications, and data warehouses.

 Installation and Patch Scripts
Improving the performance of installation and patch scripts is more important than

many developers realize. There are only a few direct benefits from tuning those scripts,

since they are not seen by end users and they are rarely run on production systems. But

the indirect benefits are huge, since faster installation and patching enables developers

to more quickly experiment and test.

The difference between an installation script that takes one minute and an

installation script that takes ten minutes is much more than nine minutes. When

reinstalling only takes a minute we have no excuse not to test whatever crazy idea pops

into our heads. (But this advice only applies to developers who are using a private

database development model.)

For example, the following code shows a typical installation script. The script uses 9

commands to create and populate a table. Most automatic script generation programs

create code that looks like this:

--Typical slow and wordy install script.

create table install_test1(a number);

alter table install_test1 modify a not null;

alter table install_test1

 add constraint install_test1_pk primary key(a);

insert into install_test1(a) values(1);

Chapter 18 Improve SQL performanCe

456

commit;

insert into install_test1(a) values(2);

commit;

insert into install_test1(a) values(3);

commit;

We can shrink that entire script into a single command:

--Faster and more compact install script.

create table install_test2

(

 a not null,

 constraint install_test2_pk primary key(a)

) as

select 1 a from dual union all

select 2 a from dual union all

select 3 a from dual;

The constraints are built inline along with the table, and the initial values are created

with a CTAS (create table as SELECT). Simple changes like the preceding batching can

easily make installation scripts run an order of magnitude faster.

By default, SQL*Plus reads one command, sends the command to the server, the

server parses and executes the command, the server replies with a feedback message,

and SQL*Plus displays the feedback message. Actually executing the commands usually

isn’t the slowest part of SQL*Plus scripts. Avoiding the overhead of sending commands

and receiving statuses can be a huge performance boost.

There are many other tricks we can use to simplify installation scripts. For example,

instead of using a huge number of UNION ALL commands, here are some tricks with

hierarchical queries and predefined collections:

--Alternate ways to generate numbers and other values.

select level a from dual connect by level <= 3;

select column_value a from table(sys.odcinumberlist(1,2,3));

select column_value a from table(sys.odcivarchar2list('A','B','C'));

We could take batching a step further and use the CREATE SCHEMA syntax, which

allows us to create multiple objects in a single command. In practice, that command

goes a bit too far – debugging errors becomes difficult when our entire script is just a

Chapter 18 Improve SQL performanCe

457

single command. And remember that we only need to batch most of our commands to

get huge performance benefits.

Anonymous blocks can also help us improve the performance of automatically

generated scripts. Many database utilities don’t understand the importance of

batching and create long lists of separate commands. It may be impractical to rewrite

automatically generated scripts to use tricks like UNION ALL. But we can still realize most

of the performance benefits by turning the list of commands into an anonymous block.

Simply add BEGIN at the front of the script and END; at the end.

Anonymous blocks are sent to the database as a single PL/SQL command. The server

still needs to spend extra time parsing and executing multiple commands. But at least

the network traffic and SQL*Plus overhead is eliminated.

 OLTP Applications
OLTP applications are by nature one-at-a-time systems. But there are still plenty of

opportunities to batch commands, both by working with the applications and by

working with SQL.

There used to be a battle between application developers and database developers –

who would get to implement the “business logic”? The application developers won and

us database developers need to accept defeat. There’s no point trying to talk application

developers out of using Object Relational Mapping tools like Hibernate (although it

might be worth considering SQL-centric frameworks like jOOQ). Instead, we need to

work with the existing tools and be willing to provide advanced SQL when possible.

ORM tools may not always generate ideal SQL statements but that doesn’t mean

we don’t have any control over the SQL generation. Before we worry about row-by-

row processing we need to ensure the application is not making even bigger mistakes;

applications should not frequently reconnect to the database, and applications should

only use one command per logical change. Applications should certainly not make

changes one column at a time. We do not want our application to INSERT an empty row

and then run separate commands to UPDATE each column one at a time.

Few systems are purely OLTP; there are usually some batch processes somewhere.

Those processes are good candidates for advanced SQL, or at least taking advantage of

the applications’ batch processing features. Options like JDBC batch execution can make

huge performance improvements.

Chapter 18 Improve SQL performanCe

458

We don’t have to choose purely Object Relational Mapping or purely SQL. ORM

frameworks can still run native queries and call custom PL/SQL functions. At the very

least we can create views for the application. We shouldn’t limit ourselves purely to

database-agnostic features – otherwise, why did we pay for Oracle?

 Data Warehouses
For data warehouses it’s especially important to use one large SQL statement instead

of multiple small SQL statements. But data warehouses can run into problems if the

resource consumption of one SQL statement is too high.

Over the lifetime of a process, running a single SQL statement consumes less

resources then running multiple, small statements. However, large SQL statements

may consume more resources at a specific point in time. Statements must hold on to

undo and temporary tablespace until they complete. Ideally we can size our undo and

temporary tablespaces to accommodate our large queries. If not, we’re forced to break

our process into batches.

Batching can work in two different directions and solve different problems.

Combining small things into larger batches is useful for improving performance.

Breaking a large thing into small batches is useful for reducing a few specific kinds of

resource consumption and can also occasionally improve readability.

For example, large DELETE statements are notorious resource hogs. One option for

breaking up large DELETEs is to repeat the statement multiple times, but with a condition

like ROWNUM <= 1000000. Repeating DELETE statements is slow because Oracle has to

re- read the whole segment each time. But at least those smaller statements can work

with a smaller undo tablespace.

The fastest alternative to a large DELETE statement is a DROP or TRUNCATE command.

Obviously we can’t always remove all the contents of a table. But if the table is

partitioned we may be able to drop only a single partition. For example, if we have

to delete from large tables to remove old rows, we could setup the table as interval

partitioned by date, and simply drop the oldest partitions.

Another fast alternative to large DELETEs is to recreate the entire table, minus the

rows we want to delete. If we create the table with the NOLOGGING option and insert data

with the APPEND hint, we can avoid generating costly redo and undo data. The problem

with that alternative process is that it’s not trivial to recreate tables. Table recreation

scripts often forget to handle all the dependencies, like comments and grants.

Chapter 18 Improve SQL performanCe

459

Tuning large DML gets even trickier when our process requires multiple INSERT,

UPDATE, and DELETE statements. We may need to perform large changes quickly but still

enable consistent access to the old version of the table. It’s hard to get high performance,

flexibility, lower resource usage, and consistency all at the same time. But Oracle

technologies like materialized views and partition exchanging can help. Or we could

simply use a synonym that points to the original table, work on a new table, and then

switch the synonym when we’re done.

Batching can also be implemented with DBMS_PARALLEL_EXECUTE, parallel pipelined

functions, and DBMS_SCHEDULER. Those advanced options are useful but don’t get

carried away with them. For example, parallel pipelined functions are a great option for

parallelizing procedural code. But that advanced feature still isn’t going to perform as

fast as a single, parallel SQL statement.

The point is that we don’t need to sacrifice performance, availability, or consistency.

In a data warehouse the only thing we need to sacrifice is the extra time to build

advanced solutions.

 Database Tuning
Database tuning is a large topic, and condensing the 363 page Database Performance

Tuning Guide into a few pages doesn’t do the topic justice. This book focuses on SQL

tuning, and database tuning is usually a task for a DBA instead of a developer. But we

can’t completely ignore database turning; there is considerable overlap between the

two topics because database performance is mostly the sum of SQL performance. For

developers, the most important database tuning topics are measuring performance,

Automatic Workload Repository,1 Active Session History, Automatic Database Diagnostic

Monitor, and advisors.

1 This chapter assumes you have licensed the Diagnostics and Tuning Packs and are using
Enterprise Edition. In general, the Diagnostics Pack covers AWR and ASH, and the Tuning Pack
covers DBMS_SQLTUNE and advisors. If your edition or license doesn’t allow access to the tools
discussed in this chapter the concepts still apply but you will need to look for free alternatives. For
example, Statspack can be used in place of AWR and Simulated ASH can be used in place of ASH.

Chapter 18 Improve SQL performanCe

460

 Measure Database Performance
Time model statistics are a good way to measure database performance. The simple

wall-clock runtime of an application is not always a fair way of measuring performance.

It is better to measure the “DB time,” the amount of time the database spends processing

a request.

If an application takes a minute, but the “DB time” is only one second, the problem

is not with Oracle. One of the toughest parts of performance tuning is convincing people

when the database is not the problem. We can use the “DB time” metric to prove our case.

That metric is displayed in many places, like in AWR reports, V$SQL, etc. “DB time” can

be broken down into subcategories, which we can see in views like V$SYS_TIME_MODEL or

V$SESS_TIME_MODEL.

Wait events help us classify the bottlenecks that affect our database and SQL

statements. Ideally, our programs run instantly and do not have to wait on any resource.

In the real world our programs need to consume scarce resources and must wait for

them to become available. By counting the wait events and categorizing them into wait

classes we can diagnose some system and statement problems.

There are 14 wait classes and their names are mostly self-explanatory:

Administrative, Application, Cluster, Commit, Concurrency, Configuration, CPU, Idle,

Network, Other, Queueing, Scheduler, System I/O, and User I/O. (The wait class “CPU”

is not a real wait class. For some strange reason Oracle does not give a name to the most

popular wait event.)

Wait classes like User I/O and CPU are generally considered “good” waits; it’s

inevitable that our processes will use at least some I/O and CPU resources. A large

number of waits in other wait classes is often a sign of trouble.

We can look at a summary of the wait events by wait class and quickly identify

problems. Programs like Oracle Enterprise Manager use the wait events to create activity

graphs, like in Figure 18-3. By looking at the following graph we can quickly tell there was

a lot of lot of Concurrency (the red area on the left), followed by a lot of CPU (the green

area on the right). The CPU consumption could be an issue, but we should first look at

the processes and statements causing the Concurrency.

Chapter 18 Improve SQL performanCe

461

The EVENT column is stored in many tables and views, such as V$SESSION and

V$ACTIVE_SESSION_HISTORY. The EVENT column is useful but we have to remember that

NULL really means “CPU.” The following is an example of viewing wait events and wait

classes for recent session activity:

--Recent wait events.

select

 nvl(event, 'CPU') event,

 nvl(wait_class, 'CPU') wait_class,

 v$active_session_history.*

from v$active_session_history

order by sample_time desc;

There are literally thousands of wait events and most of them are documented in the

“Oracle Wait Events” chapter of the Database Reference. As we look at reports on wait

events we will learn which waits are expected and which ones imply there is trouble. We

must always focus on the most popular waits. There will always be some weird waits with

Figure 18-3. Example of a (modified) top activity report from Oracle Enterprise
Manager

Chapter 18 Improve SQL performanCe

462

a small number of occurrences. We don’t want to waste our time investigating waits that

rarely happen.

Statistics contain cumulative numbers for active sessions and the entire system.

Views like V$SESSTAT and V$SYSSTAT are useful for finding which sessions or databases

are using an unusual amount of resources.

For example, generating too much redo data can be a problem. Oracle doesn’t track

redo usage per SQL statement, but the following query shows the sessions that generated

the most redo. With the session identifier, SID, we can begin tracking down the source of

the redo.

--Sessions that generated the most redo.

select round(value/1024/1024) redo_mb, sid, name

from v$sesstat

join v$statname

 on v$sesstat.statistic# = v$statname.statistic#

where v$statname.display_name = 'redo size'

order by value desc;

REDO_MB SID NAME

------- --- ---------

360 268 redo size

2 383 redo size

1 386 redo size

...

Metrics contain ratios of statistics per time. “Buffer Cache Hit Ratio” is the most

popular metric, it tells us what percentage of our data is read from memory instead of disk.

While statistics give us grand totals, it’s more useful to know the ratios at different

points in time. For example, if a database system has generated 1 petabyte of I/O that

doesn’t necessarily tell us much – the significance depends on how long the instance

has been running. But if we look at the metric “I/O Megabytes per Second,” like in

the following query, the numbers are a more meaningful measurement of system

performance.

--Current I/O usage in megabytes per second.

select begin_time, end_time, round(value) mb_per_second

from gv$sysmetric

Chapter 18 Improve SQL performanCe

463

where metric_name = 'I/O Megabytes per Second';

BEGIN_TIME END_TIME MB_PER_SECOND

------------------- ------------------- -------------

2018-12-20 23:02:57 2018-12-20 23:03:58 65

Sampling is the most useful way to measure performance in Oracle. We may think

we want to know every detail about every SQL execution, but in reality that much

information would be overwhelming. In practice, it’s good enough to take a picture

of what is happening every second and then do our tuning based on those samples.

Sampling is used in Automatic Workload Repository and Active Session History, as

described in the next sections.

We can solve 99.9% of our performance problem with sampling. Capturing all of the

activity of a database, like with tracing, is almost never necessary in modern versions of

Oracle. We don’t have to build our own sampling system, or make any decisions about

how often to sample or what to sample. Oracle’s sampling systems are always running,

for every user and every statement, and the data is easily accessible through views.

We couldn’t disable Oracle’s sampling even if we wanted to. Whereas tracing must be

manually enabled, can use significant resources, and requires external, non-relational

tools to understand. Once again, easily accessible good data is better than poorly

accessible perfect data.

 Automatic Workload Repository (AWR)
Automatic Workload Repository and Active Session History are perhaps the most

powerful database tuning features. Those programs are always gathering important

information; we only have to query a table or call a package to generate a report. (But

beware of licensing issues. Even though Oracle makes everything available by default

that does not mean you are licensed to use it.)

To demonstrate how these tools work, let’s do something stupidly slow and see if

Oracle can tell us how to fix our code. First, let’s run the following PL/SQL block. This

block queries the table SATELLITE a large number of times, using a non-indexed

column. This code doesn’t do anything yet, it’s only generating activity to show up on

our reports later.

Chapter 18 Improve SQL performanCe

464

--Repeatedly count a large table using a non-indexed column.

--Takes about 10 minutes to run.

declare

 v_count number;

begin

 dbms_workload_repository.create_snapshot;

 for i in 1 .. 200000 loop

 select count(*)

 into v_count

 from satellite

 where orbit_class = 'Polar';

 end loop;

 dbms_workload_repository.create_snapshot;

end;

/

Automatic Workload Repository collects a huge amount of information and divides

that information into snapshots. By default, a snapshot contains one hour of data, and

the data is retained for 8 days. AWR can be configured to take more or less snapshots,

and retain the data for more or less time, but those changes can require more space. The

snapshots let us generate reports for ranges of time, create baselines of performance, and

compare snapshots. There are many ways to customize AWR collection. For example,

the preceding PL/SQL block calls the function DBMS_WORKLOAD_REPOSITORY.CREATE_

SNAPSHOT so we don’t have to wait an hour for our slow query to show up on reports.

The easiest way to generate an AWR report is with SQL. First we need to find the

relevant snapshot range, like this:

--Find snapshots, for generating AWR reports.

select *

from dba_hist_snapshot

order by begin_interval_time desc;

Chapter 18 Improve SQL performanCe

465

If we pick the latest two SNAP_ID values from the preceding query, we can plug them

into the following function to generate an AWR report.

--Generate AWR report.

select *

from table(dbms_workload_repository.awr_report_html(

 l_dbid => (select dbid from v$database),

 l_inst_num => 1,

 l_bid => 6709,

 l_eid => 6710

));

The preceding table function returns many rows, each of which is a line in an HTML

report. If we copy all of the lines, paste them into a text file, save the file as an .html file,

and open the file with a browser, we’ll find a wealth of information. We can also query

AWR data directly using the many DBA_HIST_* views.

AWR reports can be huge and overwhelming so I’m not even going to bother

including screenshots. Open the AWR report generated earlier, and scroll down to

the “Main Report,” which contains a menu for the different sections. If we click “SQL

Statistics” and then click “SQL ordered by Elapsed Time,” we should see our SQL

statement that counted the rows from the SATELLITE table. An HTML table of data shows

how many times the statement ran, how long it took, etc.

 Active Session History (ASH)
Active Session History data is collected every second. The data doesn’t last as long as

AWR, usually only a day. There are active session reports but the best way to access ASH

data is through the view V$ACTIVE_SESSION_HISTORY. The 112 columns in that view tell

us a lot about what recently happened in our database. If you haven’t used that view

before you should spend a minute browsing through the rows and columns.

One of the most important ASH numbers is the number of rows per SAMPLE_TIME.

The number of “active sessions” is a great way to measure how busy a database is.

A database that averages only a few samples per timestamp isn’t very busy. A database

with a hundred samples per timestamp may be too busy.

Chapter 18 Improve SQL performanCe

466

ASH data is also available in AWR, in DBA_HIST_ACTIVE_SESS_HISTORY. The AWR

version is almost the same, except the AWR data lasts longer and only contains a sample

from every 10 seconds, instead of every 1 second.

The relational interface to sampling data is a great tuning opportunity. Canned

reports are nice and can fill many needs. But eventually we’ll grow our own style of

performance tuning and build our own queries and reports. For example, I feel like

AWR reports don’t have enough details per SQL statement; and although AWR and ASH

reports look pretty, sharing and comparing HTML and Flash is difficult. In just a single

query I was able to combine AWR and ASH into a text-only chart, showing data just the

way I like it.2

Too many developers ignore ASH data because “it’s only a sample.” But sampling is

all we need. If a problem occurs for less than a second, and is never caught in a sample,

then it’s not a problem worth worrying about.

 Automatic Database Diagnostic Monitor (ADDM)
Automatic Database Diagnostic Monitor analyzes AWR data and helps find database

performance problems. After ADDM finds a problem, ADDM often suggests using

one of the automatic advisors to find a specific fix. These processes can be setup to

automatically find and fix performance problems.

In practice ADDM and the advisors are not helpful. They are only good at finding

simple problems that we can find and fix ourselves. But automated tuning systems

should improve in future versions of the database, or in a future autonomous database

environment.

There are many ways to use ADDM. The following example creates an ADDM report

for the same snapshot we looked at before.

--Generate ADDM task.

declare

 v_task_name varchar2(100) := 'Test Task';

begin

 dbms_addm.analyze_db

 (

 task_name => v_task_name,

2 See https://github.com/jonheller1/SQL_Activity_Chart for this open source query.

Chapter 18 Improve SQL performanCe

https://github.com/jonheller1/SQL_Activity_Chart

467

 begin_snapshot => 6709,

 end_snapshot => 6710

);

end;

/

We can view the report with another call to DBMS_ADDM. The report may generate a

huge number of recommendations. Somewhere in the report there should be a mention

of our query against the SATELLITE table. (But I can’t guarantee there will be any

recommendations on your system. The long-running PL/SQL block was set to run for

about 10 minutes because that’s usually long enough to trigger a recommendation, but

the recommendation thresholds are not documented.)

--View ADDM report.

select dbms_addm.get_report(task_name => 'Test Task') from dual;

...

 Recommendation 1: SQL Tuning

 Estimated benefit is .39 active sessions, 96.77% of total activity.

 Action

 Run SQL Tuning Advisor on the SELECT statement with SQL_ID

 "5115f2tc6809t".

 Related Object

 SQL statement with SQL_ID 5115f2tc6809t.

 SELECT COUNT(*) FROM SATELLITE WHERE ORBIT_CLASS = 'Polar'

 Rationale

...

ADDM still hasn’t actually tuned anything yet, but the preceding report has

produced helpful information. Pay attention to the report rationales and do not just

blindly implement every recommendation. Notice that the preceding output includes a

number of “active sessions.” That number tells us how much database activity we might

save. If the active sessions benefit is too low then it’s not worth investigating further.

The preceding ADDM output also includes the SQL statement, along with the

SQL_ID. The recommended action is to run that SQL statement through the SQL Tuning

Advisor, and we’ll need the SQL_ID to do that.

Chapter 18 Improve SQL performanCe

468

 Advisors
Oracle has many ways to offer us advice. There is the SQL Tuning Advisor,

SQL Access Advisor, Optimizer Statistics Advisor (new in 12.2), as well as the views

V$SGA_TARGET_ADVICE and V$PGA_TARGET_ADVICE. The SQL Tuning Advisor can examine

SQL statement executions and provide ideas for how to make them run faster.

For example, we can use the SQL_ID we previously found in our AWR and ADDM

reports. First, we have to create a tuning task, execute that tuning task, and save the task

name for later.

--Create and execute SQL Tuning Advisor task

declare

 v_task varchar2(64);

begin

 v_task := dbms_sqltune.create_tuning_task(

 sql_id => '5115f2tc6809t');

 dbms_sqltune.execute_tuning_task(task_name => v_task);

 dbms_output.put_line('Task name: '||v_task);

end;

/

Task name: TASK_18972

We can view the report by taking the preceding task name and plugging it into the

following SQL statement:

--View tuning task report.

select dbms_sqltune.report_tuning_task('TASK_18972') from dual;

...

1- Index Finding (see explain plans section below)

 The execution plan of this statement can be improved by creating one or more

 indices.

 Recommendation (estimated benefit: 96.64%)

Chapter 18 Improve SQL performanCe

469

 - Consider running the Access Advisor to improve the physical schema design

 or creating the recommended index.

 create index SPACE.IDX$$_4A1C0001 on SPACE.SATELLITE("ORBIT_CLASS");

 Rationale

...

Only a small part of the large report is shown here. The recommendation looks

like good advice that would have us create an index on the column that is used to

frequently filter results. The full report also includes metadata, rationales behind the

recommendations, and before-and-after execution plans if the recommendation is

accepted. The SQL Tuning Advisor can recommend other kinds of changes, such as a

SQL profile that can help nudge the execution plan in the right direction. SQL Profiles

will be discussed later.

 Other Tools
We may need other tools to tune a database. There’s not always a clear difference

between a database problem and an operating system problem. We should have at least

a rudimentary ability to use operating system commands to look for common issues.

But we should be skeptical of buying expensive, closed source programs to help us tune

databases. We shouldn’t spend money on extra tuning programs unless we can try them

first or have a recommendation from a developer we trust.

Investing time and money in a small, proprietary tuning program is risky. Even if

the program is helpful now, chances are low that we’ll be able to use it in the future.

Oracle shops tend to buy only a small number of expensive products. If you are an Oracle

developer and change jobs to develop Oracle somewhere else, SQL and PL/SQL are the

only skills that you are guaranteed to bring with you.

We should even be cautious of using Oracle Enterprise Manager. OEM is a powerful,

useful program, and it has many pages to walk us through performance issues.

Unfortunately, OEM is not nearly as reliable as the Oracle database itself. If we grow

dependent on OEM we will eventually have problems when OEM is unavailable or

has its own performance problems. We should use the SQL and PL/SQL interfaces for

database tuning whenever they are available.

Chapter 18 Improve SQL performanCe

470

 SQL Tuning – Find Slow SQL
The first and most underappreciated step of SQL tuning is finding slow SQL statements.

This task is harder than it sounds, especially since our databases run an enormous

number of SQL statements. We need to create an organized system for performance

troubleshooting, precisely define what “slow” means, and be able to find SQL that is slow

right now or was slow in the past.

 Get Organized
Every Oracle developer must have an organized collection of scripts and worksheets

for troubleshooting Oracle performance problems. There are many options for how to

organize those files – a directory on our desktop, a GitHub repository, etc. But the files

must be somewhere we can easily remember and quickly find – convenience is more

important than perfection.

When we run into a problem we should be able to pull up our trusty worksheet in

just a few seconds. As an example, I included my own worksheet in the book’s GitHub

repository, in the file “Performance.sql”. I don’t expect you to use my file; we all have

different preferences and tuning styles. But you should have something comparable and

it should be easily accessible so you can incrementally improve your troubleshooting

process. These files will grow into mind maps for how we think about Oracle problems;

there’s no one-size-fits-all solution.

 Slow Is Based on DB Time
This chapter focuses on things that are slow, but who defines what slow means? To the

end users only the wall-clock run time matters, but only thinking about the perceived

run time could cause problems. We are really looking for things that are wasteful, things

that use more resources than necessary. We need a metric that is more meaningful than

wall-clock run time but something simpler than a complete description of the system’s

resource utilization.

We don't want to improve the speed of one query at the expense of other

processes; replacing a 10-second index access with a 9-second parallel full table scan

would improve the speed but would be a ridiculous waste of resources. We don't want

to improve the speed if it doesn't matter; if a procedure calls DBMS_LOCK.SLEEP the

Chapter 18 Improve SQL performanCe

471

procedure is intentionally slow, doesn't use any significant resources, and doesn't

need tuning.

Luckily the “DB time” statistic accurately reflects the resource utilization of the

database, SQL statements, and operations. The DB time is simply the time spent doing

meaningful work in the database. The primary metrics in this chapter, ELAPSED_TIME,

number of active sessions, and “% Activity” are all strongly correlated with the DB time.

For example, if a parallel query is busy for 10 seconds and uses two parallel servers, the

ELAPSED_TIME will be roughly 20 seconds. If a procedure runs for a minute because of

DBMS_LOCK.SLEEP(60) there won’t be any active sessions for those 60 seconds.

 Find Currently Running Slow SQL
Everything we need to know about our SQL can be found inside the database, using

SQL. Other than a good IDE, we don’t want to rely on expensive, closed source programs

to find slow SQL statements.

The dynamic performance view V$SQL is the key to finding currently running SQL

statements. When I see a live performance problem this is the first query I run:

--All SQL statements that are currently running.

select

 elapsed_time/1000000 seconds,

 executions,

 users_executing,

 parsing_schema_name,

 sql_fulltext,

 sql_id,

 v$sql.*

from v$sql

where users_executing > 0

order by elapsed_time desc;

Chapter 18 Improve SQL performanCe

472

The preceding query tells us exactly what statements are running on the database

right now. Interpreting the columns and expressions is tricky, and the most important

columns are briefly described as follows:

 1. SECONDS/ELAPSED_TIME: Cumulative database time spent

on all executions of the statement.3 There are always multiple

statements running; we need this column so we can focus on the

slow ones.

 2. EXECUTIONS: Number of times the statement was executed.

Tuning a statement that runs once per hour is different than

tuning a statement that runs a thousand times per hour.

 3. USERS_EXECUTING: Number of sessions that are running the

SQL statement right now. For parallel queries this number also

counts each parallel session.

 4. PARSING_SCHEMA_NAME: Schema or user that is running

the SQL.

 5. SQL_FULLTEXT: The exact text of the SQL.

 6. SQL_ID: A unique identifier based on a hash of the SQL text. This

ID is used in almost all tuning tools and is one of the first things

we need to find when tuning. Since SQL_ID is a hash it is sensitive

to space and capitalization. We need to be careful to precisely

copy our SQL statements to get the same SQL_ID.

 7. V$SQL.*: Every one of these 98 columns is potentially important.

The large number of columns is one of the reasons why we

can’t realistically tune using the command line. When there is a

performance problem we have to explore lots of data.

Don’t expect to uncover all the mysteries of V$SQL. We may never understand all of

the columns, values, or why there are so many seemingly duplicate rows. But don’t let

the complexity deter you; V$SQL is incredibly useful even if we don’t fully comprehend it.

3 All values in V$SQL are cumulative, but only since the SQL statement has been in the shared
pool. It’s hard to predict how long statements will be in the shared pool. In practice, the slow
statements we care about will stay around for a long time.

Chapter 18 Improve SQL performanCe

473

Oracle’s definition of what is “running” may not match ours. A SQL statement

will show up in V$SQL with one or more USERS_EXECUTING if the cursor is still open.

Showing up in V$SQL doesn’t mean that Oracle is necessarily doing anything with that

statement. It’s quite common for programs to run a query, retrieve the first N rows, and

then let the query sit there for a while. Oracle doesn’t track time spent by the application

downloading or processing the rows. A row may appear to be active in V$SQL for a long

time but have a tiny ELAPSED_TIME. From a database perspective, we only care about

queries with a large ELAPSED_TIME.

 Find Historically Slow SQL
Finding SQL that was slow in the past can be more challenging than finding SQL that

is slow right now. We need to be able to quickly search through many sources – V$SQL,

V$ACTIVE_SESSION_HISTORY, DBA_HIST_ACTIVE_SESS_HISTORY, and DBA_HIST_SQLTEXT.

And we need to look for combinations of SQL text, time, username, and many other

columns. A good IDE and advanced SQL skills will come in handy.

We also need to remember that data will eventually age out of each of those sources.

As a rough estimate, V$SQL will last an hour (or less if the shared pool is manually

flushed), V$ACTIVE_SESSION_HISTORY will last a day, and DBA_HIST_* will last 8 days.

 SQL Tuning – Find Execution Plans
After we find the slow SQL statement we’re tempted to jump right into finding the

execution plan. But don’t overlook the importance of understanding the SQL. The best

performance tuning is rewriting SQL into something simpler or using an advanced

feature. If there’s no way to change the SQL to avoid the problem then we need to dive

into the execution plans.

 Graphical Execution Plans Considered Harmful
Do not make the mistake of using your IDE’s graphical execution plan viewer. While

those graphical reports may be pretty and may be easily generated at the press of a

button, graphical execution plans are always wrong or misleading.

Chapter 18 Improve SQL performanCe

474

Let’s start with a simple example that merely joins SATELLITE and LAUNCH:

--All satellites and their launch.

select *

from satellite

left join launch

 on satellite.launch_id = launch.launch_id;

In Oracle SQL Developer we can generate an explain plan by simply pressing F10.

Figure 18-4 shows the explain plan generated by SQL Developer.

There are several things wrong with the preceding output. This query generates an

adaptive plan; sometimes the plan will use a hash join and sometimes the plan will

use a nested loops join. Yet the preceding explain plan doesn’t make it clear which

operations are active and which operations are inactive. Also, the “Other XML” section

Figure 18-4. Oracle SQL Developer explain plan display

Chapter 18 Improve SQL performanCe

475

is confusing – that section contains advanced information that is rarely needed. At the

same time, that XML section is incomplete and does not include all of the hints used by

the execution plan.

I’m not trying to pick on SQL Developer; it’s a good program. Every SQL IDE I’ve ever

used has suffered from similar problems with execution plans. For execution plans we

should strive for 100% accuracy. When we’re working on performance tuning even the

slightest mistake can obscure the problem.

 Text Is Best
The EXPLAIN PLAN command and the DBMS_XPLAN package are the best way to display

execution plans. (EXPLAIN PLAN only generates an estimated execution plan, but in

my experience the estimate is almost always correct.) For example, the following code

generates the execution plan for the simple join between SATELLITE and LAUNCH:

--All satellites and their launch.

explain plan for

select *

from satellite

left join launch

 on satellite.launch_id = launch.launch_id;

select * from table(dbms_xplan.display);

Figure 18-5 shows the output. (This is another hypocritical example – the text must

be displayed as an image because 89 characters cannot fit the width of a printed page.

Normally it would be better to copy and paste the raw text.)

Chapter 18 Improve SQL performanCe

476

The preceding execution plan display is more accurate than graphical visualizations.

The output only includes the active hash join, not the inactive nested loops join. The

“Note” section warns us that we’re looking at an adaptive plan and that there is more

information under the surface. As discussed in Chapter 17, if we want to view the

inactive operations we can use this SQL statement:

--View all inactive rows of an adaptive plan.

select * from table(dbms_xplan.display(format => '+adaptive'));

EXPLAIN PLAN and DBMS_XPLAN have many benefits over graphical representations of

execution plans:

 1. Simple, Standard Format: DBMS_XPLAN works in any environment

and produces output that every Oracle professional is familiar

with. Anyone with access to Oracle can reproduce the issue, and

anyone can discuss the issue with the same standard names. We

cannot assume other developers have access to our favorite IDE.

 2. Easy to Process Output: The output is easy to save, share, and

search. We can store the output in a table, copy the text into

Notepad, etc. It's also much easier to compare the output using

a diff program, such as WinMerge. Large queries may produce

hundreds of lines in the execution plan; using a diff utility can make

tuning much easier. For programming, text is better than pictures.

Figure 18-5. Simple execution plan output from DBMS_XPLAN

Chapter 18 Improve SQL performanCe

477

 3. Includes Important Sections: For some bizarre reason IDEs

never display the “Note” section. That section includes important

information. Without the Note section we have to guess if there's

something weird going on.

 4. More Accurate: As we saw earlier, IDEs generate slightly wrong

results. Another common problem is that some IDEs use a

separate session to generate graphical execution plans. Session

settings like ALTER SESSION ENABLE PARALLEL DML are not always

applied in graphical execution plans.

 5. More Powerful: DBMS_XPLAN can be scripted and has powerful

features described in the next sections.

For a quick check, it's easier to hit F10, F5, CTRL+E, or whatever the shortcut is in

our IDE. For serious execution plan analysis that will be shared with others, always use

EXPLAIN PLAN and DBMS_XPLAN. The basic commands are worth memorizing. It’s hard to

remember all the details, but we can always look up EXPLAIN PLAN in the SQL Language

Reference and look up DBMS_XPLAN in the PL/SQL Packages and Types Reference.

 DBMS_XPLAN Functions
The function DBMS_XPLAN.DISPLAY only works for execution plans that were gathered

through the EXPLAIN PLAN command. Those execution plans are still estimates, although

in practice the estimates are accurate unless there are bind variables or adaptive plans.

The function DBMS_XPLAN.DISPLAY_CURSOR displays the actual execution plan of

a SQL statement that already ran. In order to identify the SQL statement, this function

must be passed a SQL_ID parameter. DISPLAY_CURSOR is especially useful because it can

display actual numbers, not just estimates. The importance of actual numbers will be

discussed later in this chapter.

The function DBMS_XPLAN.DISPLAY_AWR can display all of the different execution

plans used by a SQL statement. The history goes back as far as the AWR retention period,

which defaults to 8 days. This feature is useful for diagnosing problems where a query

used to run fast but is now running slow.

Chapter 18 Improve SQL performanCe

478

 DBMS_XPLAN FORMAT Parameter
The most important parameter for the DISPLAY* functions is FORMAT. The FORMAT

parameter accepts a space-separated list of options. The most common of those options

are BASIC (only display the ID, operation, and name), TYPICAL (display the default

columns), and ADAPTIVE (display inactive operations).

In addition to those options, FORMAT also accepts keywords that act as modifiers to

execution plans. For example, we may want to display the BASIC format but also include

ROWS. On the other hand, we can display the TYPICAL format with everything except the

ROWS. The following SQL statements show some combinations of the options:

--FORMAT options.

select * from table(dbms_xplan.display(format => 'basic +rows'));

select * from table(dbms_xplan.display(format => 'typical -rows'));

There are several other formatting options listed in the manual. Most of the options

are only meant for customizing the display.

FORMAT also has useful hidden options. Using either ADVANCED or +OUTLINE will

generate output that includes an “Outline Data” section. That new section displays a set

of hints that fully describe the execution plan.

--Display Outline Data.

select * from table(dbms_xplan.display(format => 'advanced'));

The output is full of cryptic, undocumented hints. The following results only show

the “Outline Data” section of the execution plan. Don’t spend too much time studying

the output; we don’t need to understand all of these hints.

...

Outline Data

 /*+

 BEGIN_OUTLINE_DATA

 USE_HASH(@"SEL$2BFA4EE4" "LAUNCH"@"SEL$1")

 LEADING(@"SEL$2BFA4EE4" "SATELLITE"@"SEL$1" "LAUNCH"@"SEL$1")

 FULL(@"SEL$2BFA4EE4" "LAUNCH"@"SEL$1")

 FULL(@"SEL$2BFA4EE4" "SATELLITE"@"SEL$1")

 OUTLINE(@"SEL$1")

Chapter 18 Improve SQL performanCe

479

 OUTLINE(@"SEL$2")

 ANSI_REARCH(@"SEL$1")

 OUTLINE(@"SEL$8812AA4E")

 ANSI_REARCH(@"SEL$2")

 OUTLINE(@"SEL$948754D7")

 MERGE(@"SEL$8812AA4E" >"SEL$948754D7")

 OUTLINE_LEAF(@"SEL$2BFA4EE4")

 ALL_ROWS

 DB_VERSION('12.2.0.1')

 OPTIMIZER_FEATURES_ENABLE('12.2.0.1')

 IGNORE_OPTIM_EMBEDDED_HINTS

 END_OUTLINE_DATA

 */

...

Those hints can be invaluable for solving advanced tuning problems. If a query runs

differently on two systems the “Outline Data” may help explain the difference. And if we’re

desperate to force the plan to work the same on both systems we can paste that block of

hints into a query. The ADVANCED option also creates an extra section for “Query Block

Name/Object Alias,” which is helpful for referencing specific objects in custom hints.

Using the outline is a blunt way of tuning and doesn’t solve the root cause.

Sometimes we don’t have time to get to the bottom of execution plan differences and just

need to fix things right away.

 Note Section
Before we go any further with execution plan analysis we should check the Note section.

The following are the most common and troublesome notes:

 1. Dynamic statistics used: dynamic sampling (level=2): Level 2

implies object statistics are missing.

 2. This is an adaptive plan: There are multiple versions of the plan

and we’re only looking at one right now.

 3. Statistics/cardinality feedback used for this statement: This

plan has corrected itself. The original plan was different.

Chapter 18 Improve SQL performanCe

480

 4. SQL profile/plan baseline/patch “X” used for this statement:
This plan was influenced or forced to behave a certain way.

 5. Direct load disabled because X: Direct-path writes can be

prevented by parent referential integrity constraints, triggers, and

other limitations.

 6. PDML disabled in current session: Parallel DML is not working,

usually because we forgot to run ALTER SESSION ENABLE

PARALLEL DML.

 7. Degree of parallelism is X because of Y: The requested DOP and

the reason why that DOP was used. The DOP is vital information

for large queries and will be discussed in more detail later.

Similar to Note, the “Predicate Information” section can also be important. For

example, if the NLS sort and comparison parameters are not set to binary then our

predicates might be converted to use NLSSORT. Functions like NLSSORT can prevent index

access.

 Other Ways to Get Execution Plans
Execution plans can be quickly generated in SQL*Plus using the AUTOTRACE feature. The

command SET AUTOTRACE ON will automatically display the results, actual execution

plan, and actual statistics from the execution. We can avoid printing results with the

command SET AUTOTRACE TRACEONLY.

Execution plan information is also available in the data dictionary in the view

V$SQL_PLAN. Building execution plans from the views is difficult, but those views

can be useful for looking for specific execution plan features. For example, we can use

V$SQL_PLAN to find out which indexes are used by which statements.

 SQL Tuning – Find Actual Times and Cardinalities
for Operations
Many developers make a huge mistake by not drilling down further than the execution

plan. A SQL statement is a collection of algorithms and data structures – each statement

is effectively a whole program. It’s meaningless to say “this program is slow”; we need

Chapter 18 Improve SQL performanCe

481

to know which part of the program is slow. We need to drill down and focus on actual

operation statistics.

Operations are the atomic unit of SQL tuning.4 Measuring the actual execution time

of operations tells us which algorithms and data structures are the slowest. Measuring the

actual cardinalities tells us why Oracle picked the operation. If we have to guess which

operations are slowest we will waste a lot of time. Always use actual numbers when possible.

 GATHER_PLAN_STATISTICS
Let’s create a slow SQL statement to practice tuning. This test case is not as simple as

other test cases used in this book. Newer versions of Oracle have many mechanisms

to automatically fix performance. If we only made one simple mistake Oracle would

compensate for it.

We’ll start with an imaginary ETL process that creates a copy of the LAUNCH table. But

the process makes a huge mistake; the process gathers statistics before the data is loaded

into the table, not after the data is loaded. Oracle can handle missing statistics but has a

harder time dealing with bad statistics.

--Create LAUNCH2 table and gather stats at the wrong time.

create table launch2 as select * from launch where 1=2;

begin

 dbms_stats.gather_table_stats

 (

 ownname => sys_context('userenv', 'current_schema'),

 tabname => 'launch2'

);

end;

/

insert into launch2 select * from launch;

commit;

4 Like with real atoms, operations can be divided into smaller pieces. We could trace operations to
C functions, or operating system calls, or machine instructions, etc. In practice, the operation is
as deep as we want to go.

Chapter 18 Improve SQL performanCe

482

With bad statistics, the LAUNCH2 table is more likely to cause performance

problems. Let’s say we find a slow statement and want to tune it. To get the actual

execution plan numbers, instead of just guesses, we must re-run the slow query with the

hint GATHER_PLAN_STATISTICS, like this:

--Distinct dates a satellite was launched.

select /*+ gather_plan_statistics */ count(distinct launch_date)

from launch2 join satellite using (launch_id);

The next step is to find the SQL_ID with a query like this:

--Find the SQL_ID.

select * from gv$sql where sql_fulltext like '%select%launch2%';

We must take the preceding SQL_ID and use it in the following call to DBMS_XPLAN.

DISPLAY_CURSOR. To view the extra data generated by the GATHER_PLAN_STATISTICS hint

we need to use the value IOSTATS LAST in the FORMAT parameter:

--First execution has NESTED LOOPS, bad cardinalities, bad performance.

select * from table(dbms_xplan.display_cursor(

 sql_id => '82nk6712jkfg2',

 format => 'iostats last'));

That was a lot of work simply to find an execution plan but the extra effort is about

to pay off. The output is displayed in Figure 18-6. Notice the execution plan includes the

new columns “A-Rows” and “A-Time” – the actual values.

Chapter 18 Improve SQL performanCe

483

The first tuning step is to find what is slow, by finding the operation with the largest

“A-Time.” In the preceding output we can see that the slowest operation is the NESTED

LOOPS SEMI. If we want to improve performance we must focus on that operation.

This execution plan is small and there’s only one thing to tune. For larger SQL

statements, with larger execution plans, the actual time is the only way to find the real

problem.

Next we want to know why the join operation is slow. Comparing the actual number

of rows with the estimated number of rows is the best way to understand the optimizer’s

mistakes. The cardinality estimate doesn’t need to be perfect, it just needs to be in the

ballpark for the optimizer to make a good decision.

When comparing cardinalities we’re not looking for the biggest mistake, we’re

looking for the first meaningful mistake. Cardinality mistakes propagate throughout the

execution plan and we want to find the root cause of the mistake. Execution plans are

run inside out, so we want to find the most-indented line.

Lines 5 and 6 are the most indented. Line 6 estimated 43113 rows but the actual

number of rows is 5295. That estimate is good enough. Less than a 10x difference usually

doesn’t matter.

Line 5 estimated 1 row but the actual number of rows is 70535. A difference that

huge is worth our attention. Line 5 is a full table scan of the LAUNCH2 table. There is no

asterisk on line 5, implying there are no predicates applied to that operation. So there is

Figure 18-6. Slow execution plan with actual numbers

Chapter 18 Improve SQL performanCe

484

no obvious reason why the estimate would be so wrong unless the statistics are bad. The

solution is easy – re-gather statistics and run again.

--Re-gather stats and re-run the query.

begin

 dbms_stats.gather_table_stats

 (

 ownname => sys_context('userenv', 'current_schema'),

 tabname => 'launch2',

 no_invalidate => false

);

end;

/

--Distinct dates a satellite was launched.

select /*+ gather_plan_statistics */ count(distinct launch_date)

from launch2 join satellite using (launch_id);

--Second execution has HASH JOIN, good cardinalities, good performance.

select * from table(dbms_xplan.display_cursor(

 sql_id => '82nk6712jkfg2',

 format => 'iostats last'));

The preceding code generates the execution plan displayed in Figure 18-7. The join

changed from a NESTED LOOPS to a HASH JOIN, which is more appropriate for joining a

large percentage of data. The actual cardinalities almost perfectly match the estimated

cardinalities, which strongly implies that Oracle created the best possible plan for the

given statement and objects. The actual times also decreased.

Chapter 18 Improve SQL performanCe

485

All the signs indicate that Oracle produced a perfect execution plan. We have to

be careful comparing small numbers like 0.28 seconds to 0.02 seconds. Such a small

difference could be explained by caching or system activity. To be completely certain of

our results we could run the preceding tests multiple times, possibly in a PL/SQL loop.

 Real-Time SQL Monitor Reports (Text)
Real-Time SQL Monitor Reports are the best way to tune long-running SQL statements.

These reports provide the actual number of rows, the actual amount of time, the wait

events, and other important information. These reports also don’t require re-running the

statement, which isn’t always feasible for long-running statements.

The SQL monitoring framework is yet another way to measure SQL performance.

AWR stores high-level metrics for days, ASH stores samples for hours, and SQL

monitoring stores granular details for minutes. To use SQL monitoring we must run the

reports either while the statements are running or shortly after they finish.5 Similar to

AWR and ASH, we can also access SQL monitoring data in the data dictionary, through

views like V$SQL_PLAN_MONITOR and V$SQL_MONITOR.

5 If SQL monitoring data ages out we can still partially recreate the format of the reports using
AWR and ASH data. I’ve built an open source program for historical SQL monitoring: https://
github.com/jonheller1/hist_sql_mon.

Figure 18-7. Fast execution plan with actual numbers

Chapter 18 Improve SQL performanCe

https://github.com/jonheller1/hist_sql_mon
https://github.com/jonheller1/hist_sql_mon

486

SQL monitoring only works on statements that take longer than 5 seconds or have

the MONITOR hint. Our previous example didn’t run long enough to produce meaningful

SQL monitoring data. Instead, let’s run a really stupid SQL statement in a separate

session:

--Ridiculously bad cross join. (Run in a separate session.)

select count(*) from launch,launch;

While the preceding statement is running we want to find the SQL_ID and call

DBMS_SQLTUNE to generate the report:

--Find the SQL_ID, while the previous statement is running.

select *

from gv$sql where sql_fulltext like '%launch,launch%'

 and users_executing > 0;

--Generate report.

select dbms_sqltune.report_sql_monitor('7v2qjmgrj995d') from dual;

The function REPORT_SQL_MONITOR can produce reports in multiple formats. The

default text format is usually the best. The text output is shown in Figure 18-8. There’s a

lot of information here; you may want to spend a minute looking at the output.

Chapter 18 Improve SQL performanCe

487

The preceding output contains a lot of metadata about the SQL statement, and the

output adjusts depending on the type of query. For example, if there were bind variables

the report would have displayed the bind values. That metadata is helpful because these

reports are worth saving and comparing days later. Without the metadata we might

forget when the report was run and who ran it.

The most important part of the report is the table of operations. The format is similar

to DISPLAY_CURSOR and contains the actual values. We can use “Rows (Actual)” to get the

real cardinality, and “Activity (%)” to find the slowest operations.

The column “Activity Detail (# samples)” provides a count of each wait event for each

operation. The number in parentheses represents the number of seconds the query was

waiting for that kind of resource. In the preceding example all the waits are for “Cpu.”

In more realistic examples there will be many kinds of waits. Like with operations, we

should only worry about waits that have a significant number. There will often be a

strange-sounding wait event, but if the wait only happened one time then it’s not worth

worrying about. The most common waits should be for CPU and I/O, such as “Cpu,”

Figure 18-8. Real-time SQL monitor report with text format

Chapter 18 Improve SQL performanCe

488

“db file sequential read,” and “db file scattered read.” We can look up unusual events in

the “Oracle Wait Events” appendix of the Database Reference manual.

The monitor report may also contain a “Progress” column that gives a percentage

completion for the operation. That number can be useful for predicting the completion

of a statement but we must be careful to interpret the progress correctly. Many

operations will iterate, so an operation may be “99%” complete many times. The column

“Execs” tells us how many times an operation has executed.

Unfortunately, the SQL monitor reports do not include Notes or Predicate

information. Sometimes we may need to generate the execution plan with both DBMS_

SQLTUNE and DBMS_XPLAN, and combine the two results to get all the relevant information.

 Real-Time SQL Monitor Reports (Active)
SQL monitor reports can be generated in different formats, including text, HTML, XML, and

Active. The format affects more than just how the data is displayed. There is a significant

amount of data generated by Active reports that are not displayed in other formats. Active

reports are inconvenient but contain information useful for advanced tuning.

Active reports return an HTML page that includes an embedded Flash object. The

Flash objects need to download other objects, so we can only use active reports on a

system that allows Flash and has access to the Internet. All modern browsers discourage

Flash in websites, and running flash from a local file is even more dangerous. Our

browser may require extra configuration to enable the report to run.

There are times when the extra information in the Flash format is worth the

inconvenience. Active reports contain important information about parallel SQL, such

as how many parallel servers were allocated and used. Active reports are also helpful for

reporting on a PL/SQL process with multiple SQL statements.

For example, we can generate an active report with this SQL statement:

--Generate Active report.

select dbms_sqltune.report_sql_monitor('242q2tafkqamm',

 type => 'active')

from dual;

One of the pages of the active report is displayed in Figure 18-9. The report is

crammed full of interactive information so the screenshot doesn’t do it justice.

This report is one of the few graphical SQL tuning tools worth using, even though it

annoyingly uses Flash.

Chapter 18 Improve SQL performanCe

489

 Degree of Parallelism
If our SQL can’t work smarter we can make it work harder with parallelism. Finding the

requested and allocated Degree of Parallelism is vital in data warehouse operations.

There are many lies and myths surrounding parallelism. We need to carefully measure

our results and use actual numbers instead of guesses.

We must remember Amdahl’s law and the importance of parallelizing every possible

operation. If the execution plan has one PX operation then it should have many PX

operations. We can achieve full parallelism by using statement-level hints instead of

object-level hints.

The only time we don’t want to use parallelism is with correlated subqueries. We do

not want to parallelize an operation that runs a large number of times – the overhead of

parallelism would be greater than the benefit. The best way to avoid that problem is to

re-write subqueries into inline views.

Choosing the optimal DOP is difficult. A higher DOP is better for the individual

statement but may be unfair for other processes.

Each Oracle parallel server is a lightweight process, and Oracle is capable of

handling a huge number of processes. The amount of overhead increases with each

parallel server but not as much as we might think. A high DOP definitely has diminishing

returns and can starve the rest of the system. But if we are only executing one sufficiently

long- running statement, and the system is properly configured, then a higher number

Figure 18-9. Real-time SQL monitor report with active format

Chapter 18 Improve SQL performanCe

490

is almost always better. Figure 18-10 shows the relationship between DOP and the

performance of a single statement.

Figure 18-10. How we think parallelism works versus how it really works

The default DOP is based on the parameter CPU_COUNT multiplied by the parameter

PARALLEL_THREADS_PER_CPU. For this reason it’s important that the CPU_COUNT is set

to the physical number of processors and not some marketing definition of a “logical

processor.”

Unfortunately there are many times when the default DOP is not used. There are

over 40 factors6 that affect the degree of parallelism: hints, session settings, object

settings, interoperation parallelism (which doubles the number of parallel servers

for things like sorting and grouping), etc. Developers and administrators often worry

6 See my answer here for a long list of things that affect the DOP: https://stackoverflow.
com/a/21132027/409172

Chapter 18 Improve SQL performanCe

https://stackoverflow.com/a/21132027/409172
https://stackoverflow.com/a/21132027/409172

491

too much about runaway parallelism. Before we decrease a critical parameter, such

as PARALLEL_MAX_SERVERS, we should understand exactly why statements are getting

their DOP. We should also measure the performance at large DOPs instead of simply

assuming a large DOP is bad.

We should look at the execution plans for information about the DOP. But keep in

mind that the execution plan only knows the requested number of parallel servers. The

Real-Time SQL Monitor report, and V$PX_PROCESS, can tell us the actual number of

parallel servers. Even when our SQL statement is allocated the correct number of parallel

servers we still need to check that the SQL statement is meaningfully using those servers.

Active reports include a chart that shows us how many parallel processes are truly used

for each operation. We need to make sure our statements request, allocate, and use the

proper number of parallel servers at all times.

Parallel execution is complicated. If we’re working on a data warehouse we

should carefully read the 87 page “Using Parallel Execution” chapter in the VLDB and

Partitioning Guide.

 What to Look for in Execution Plans
Here is a quick checklist for how to investigate execution plans. These summaries are

a good starting point even though they oversimplify the real-world problems we will

encounter.

 1. Note, Predicate: Something weird in these sections may be

responsible for everything else in the execution plan.

 2. Slow operations: Only invest time tuning operations that are

either slow or cause a slow operation.

 3. Bad cardinality: Find the first operation that has a significantly

wrong cardinality estimate.

 4. Wrong join operations: Avoid nested loop index access for

joining a large percentage of rows. Avoid full table scan hash joins

for joining a small percentage of rows.

 5. Wrong access operations: Avoid index range scans for returning

a large percentage of rows. Avoid full table scans for returning a

small percentage of rows.

Chapter 18 Improve SQL performanCe

492

 6. Weird waits: A significant amount of time spent on unusual waits

should be investigated. Most of the waits should be for CPU or

I/O. Other waits might be a sign of a configuration problem.

 7. Large number of executions: Are the operations fast but repeated

a large number of times? This can happen with a subquery that

needs to be unnested, perhaps by rewriting the SQL to use a join.

 8. Bad join order: For hash joins the smallest row source should be

listed first. The row source listed first is the one used to create the

hash table, which hopefully fits in memory.

 9. Direct-path or conventional writes: Ensure that either LOAD AS

SELECT or LOAD TABLE CONVENTIONAL is used as expected.

 10. Partitioning: Ensure that partition pruning is being used as

expected.

 11. Numbers that don’t add up: If the “Activity (%)” column doesn’t

add up to 100% then the remaining time is being spent by a

recursive query. Check for slow data dictionary queries or for slow

functions used in the query. It doesn’t matter if the numbers in the

other columns add up.7

 12. Temporary tablespace: An unusually large amount of temporary

tablespace is slow, may cause resource problems, and is a bad

sign of other issues. Oracle may be joining the tables in the

wrong order, merging views incorrectly, or performing DISTINCT

operations at the wrong time.

 13. Parallelism: Check the requested, allocated, and used DOP.

SQL tuning is difficult and we must always arm ourselves with actual times and

cardinalities, not just guesses.

7 For example, there are at least four cases when the total cost of the execution plan is less than
the cost of the child operations. See my answer here for details: https://stackoverflow.
com/a/25394748/409172

Chapter 18 Improve SQL performanCe

https://stackoverflow.com/a/25394748/409172
https://stackoverflow.com/a/25394748/409172

493

 SQL Tuning – Changing Execution Plans
We’re finally ready to discuss fixing our problems. Finding and understanding

performance problems is by far the most difficult part of tuning. Once we understand the

problem, there is a long list of techniques for fixing the SQL. Each technique could fill an

entire chapter and we only have room to show an example for SQL Profiles.

 Changing Execution Plans
There are many ways to change the execution plans of SQL statements. The following

list is ordered by which solutions are the cleanest. This subjective ranking is based on a

combination of proportionality, obviousness, and simplicity.

Fixes should be proportional to the problem; rewriting a query only affects

one query, whereas changing a system parameter affects many queries. Fixes

should be obvious; rewriting a query makes the changes obvious, whereas using

DBMS_ADVANCED_REWRITE will fool most developers. Fixes should be easy; adding a hint

directly to the query is easier than adding a hint through a SQL Profile.

In the real world we have many constraints placed on our tuning. Frequently we have

to fix the execution plan without directly changing the query. Sometimes we have to skip

the easy steps and go to advanced steps that secretly swap out a bad execution plan for a

good one.

 1. Change how the query is called: Ensure the application is not

creating a new connection for each query. Try to use batching

instead of reading and writing one row at a time.

 2. Rewrite the query: Apply advanced features and programming

styles. If our query is too large to tune in one piece we can split it

into non-transformable pieces with the ROWNUM trick.

 3. Gather statistics: Described in more detail at the end of the

chapter.

 4. Create or alter objects: Consider adding indexes, constraints,

materialized views, compression, partitions, parallelism, etc.

 5. Add hints to the query: See the next section for details

about hints.

Chapter 18 Improve SQL performanCe

494

 6. SQL profiles: Add hints to a query without directly changing the

SQL text. This feature is also described later in the chapter.

 7. SQL plan baselines: Replace one plan with another plan. This

feature is a large, complex system that can be used to control

and evolve execution plan acceptance. This feature is useful for

preserving performance during large system changes but is too

cumbersome for most SQL tuning.

 8. Stored outlines: An earlier, simpler, and deprecated version of

SQL Plan Baselines.

 9. DBMS_STATS.SET_X_STATS: Manually modifying table, column,

and index stats can significantly change plans by making objects

artificially look more or less expensive.

 10. Session control: Change parameters at the session level. For

example, if an upgrade from 12c to 18c causes problems for one

process, and we don’t have time to fix each query individually,

we might be able to run this command at the beginning of

the session: ALTER SESSION SET OPTIMIZER_FEATURES_

ENABLE='12.2.0.1'.

 11. System control: Change parameters for the entire system. For

example, on a data warehouse in 12.2 we may want to spend more

parsing time to generate good execution plans; we can enable

SQL Plan Directives by running ALTER SYSTEM SET OPTIMIZER_

ADAPTIVE_STATISTICS=TRUE. Or if we see lots of odd wait events

we may need to reconfigure the system. Try not to lie to Oracle,

and do not change a system parameter to only fix a single instance

of a problem.

 12. DBMS_ADVANCED_REWRITE: Change a query into another

query. This package is a neat trick but is kind of evil because we

can secretly change the meaning of a query.

 13. Virtual private database: Change a query into another query by

adding predicates. This feature is not intended for performance

but we can abuse it to change execution plans.

Chapter 18 Improve SQL performanCe

495

 14. SQL translation framework: Change a query into another query

before it even gets parsed.

 15. SQL Patch (DBMS_SQLDIAG.CREATE_SQL_PATCH): A semi-

documented way to add hints to queries.

 Hints
Hints are directives the optimizer must follow if possible. The name “hint” is misleading.

Despite what many people believe, the optimizer does not randomly ignore hints. It only

seems that way because the hint syntax is complicated. There are many reasons why a

hint can be invalid and cannot be followed.

There are hundreds of hints and many of them are documented in the “Comments”

chapter of the SQL Language Reference. There’s a hint for every execution plan feature.

We can generate a full list of hints for an execution plan by passing the parameter

FORMAT=>'+OUTLINE' to DBMS_XPLAN. Most hints are cryptic and difficult to use. Luckily,

we normally only need to add a small number of hints.

It can be useful to think of there being two different categories of hints; good hints

that provide useful information to the optimizer, and bad hints that tell the optimizer

how to do its job.

Good hints tell the optimizer something it couldn’t know, like a trade-off that we’re

willing to accept. For example, only a developer could choose the APPEND hint, because

that hint can make the results unrecoverable.

Bad hints circumvent the normal optimizer logic, and require developers to play the

role of the optimizer. We don’t always have time to fix the root cause and sometimes we

need to quickly tell the optimizer how to do its job. Over-using bad hints can make our SQL

difficult to understand, and may cause us to miss out on useful features in future versions.

The following is a list of popular, good hints:

 1. APPEND/APPEND_VALUES: Use direct-path writes; improves

speed but data is initially unrecoverable.

 2. DRIVING_SITE: Execute a query on a remote site; when using

tables over database links we may want to execute the join on a

remote database instead of passing the rows and then joining them.

 3. DYNAMIC_SAMPLING: Read blocks from the row sources to

provide additional optimizer information.

Chapter 18 Improve SQL performanCe

496

 4. ENABLE_PARALLEL_DML: New hint in 12c that replaces ALTER

SESSION ENABLE PARALLEL DML.

 5. FIRST_ROWS: Optimize the query to quickly return the first rows,

instead of optimizing to quickly return the entire set.

 6. PARALLEL: Use multiple threads to take advantage of more CPU

and I/O resources. Try to use statement-level hints instead of

object-level hints.

 7. QB_NAME: Create a name for a query block; useful for referencing

the query block in other hints.

The following is a list of popular, bad hints:

 1. FULL: Use a full table scan.

 2. INDEX*: Use a specific index or type of index access.

 3. LEADING/ORDERED: Join tables in a specific order.

 4. MERGE: Merge views and rewrite the two queries into one.

 5. OPTIMIZER_FEATURES_ENABLE: Use an older version of the

optimizer to disable newer features that cause problems.

 6. OPT_PARAM: Change specific parameter values for a query; for

example, if a DBA foolishly changed OPTIMIZER_INDEX_COST_ADJ

on the system we can at least fix it for the query.

 7. PQ*: How to process parallel data.

 8. UNNEST: Convert a subquery into a join.

 9. USE_HASH/USE_MERGE/USE_NL: Force a hash join, sort-

merge join, or a nested loops join.

There are many more hints than what is in the preceding list. And almost every hint

has a NO_* version that has the opposite effect. There are even undocumented hints that

are helpful enough to consider using. CARDINALITY and OPT_ESTIMATE can hard-code or

adjust the row estimate for an inline view or operation. Those hints are used internally by

SQL Profiles created by the automatic SQL tuning advisor. The MATERIALIZE hint forces

Oracle to store the results of a common table expression in a temporary table, instead

of re-running the subquery. Oracle automatically decides whether to materialize a

Chapter 18 Improve SQL performanCe

497

common table expression or not, but sometimes Oracle makes the wrong choice. Those

undocumented hints can be useful when nothing else works.

Using hints correctly takes practice and patience. Oracle does not throw an error if

the hint syntax is invalid or impossible to use. Instead, Oracle will simply ignore that hint

and all the hints that come after it. In 19c we can use FORMAT=>'+HINT_REPORT' in the

DBMS_XPLAN package to help understand what hints were used. The next section shows a

quick example of using a hint when creating a SQL Profile.

 SQL Profile Example
This section demonstrates a worst-case SQL tuning example; we need to apply hints

to fix an execution plan, but we do not have access to change the query. SQL Plan

Baselines, Outlines, and the SQL Tuning Advisor can preserve, evolve, and fix some

problems, but it’s hard to get those tools to do exactly what we want. By manually

creating SQL Profiles we can inject precisely the hints we need.

For example, imagine we have an application that mistakenly decides to run

all queries with parallelism enabled. The excessive parallel queries are trashing

performance and need to be disabled immediately. We can’t easily change the

application but we need to change the execution plans right now. The following is an

example of the bad query and execution plan.

--Query that shouldn't run in parallel.

explain plan for select /*+parallel*/ * from satellite;

select * from table(dbms_xplan.display(format => 'basic +note'));

Plan hash value: 3822448874

--

| Id | Operation | Name |

--

| 0 | SELECT STATEMENT | |

| 1 | PX COORDINATOR | |

| 2 | PX SEND QC (RANDOM)| :TQ10000 |

| 3 | PX BLOCK ITERATOR | |

| 4 | TABLE ACCESS FULL| SATELLITE |

--

Chapter 18 Improve SQL performanCe

498

Note

 - automatic DOP: Computed Degree of Parallelism is 2

The following code creates a SQL Profile that inserts a NO_PARALLEL hint into the

query. SQL Profiles are normally created by the SQL Tuning Advisor. Unfortunately,

the SQL Tuning advisor doesn’t always know exactly what we want to do. It’s helpful to

create the profiles ourselves, precisely the way we want.

--Create SQL Profile to stop parallelism in one query.

begin

 dbms_sqltune.import_sql_profile

 (

 sql_text => 'select /*+parallel*/ * from satellite',

 name => 'STOP_PARALLELISM',

 force_match => true,

 profile => sqlprof_attr('no_parallel')

);

end;

/

After running the preceding PL/SQL block, if we re-run the same EXPLAIN PLAN and

DBMS_XPLAN commands, we’ll see the new execution plan as follows.

Plan hash value: 2552139662

| Id | Operation | Name |

| 0 | SELECT STATEMENT | |

| 1 | TABLE ACCESS FULL| SATELLITE |

Note

 - Degree of Parallelism is 1 because of hint

 - SQL profile "STOP_PARALLELISM" used for this statement

Chapter 18 Improve SQL performanCe

499

The new profile appears in the Note section, and the execution plan does not use

parallelism anymore. This technique can be applied to use any combination of hints.

SQL Profiles are great but are not the ideal way to solve performance problems. We have

to remember to deploy the profile to all databases. And if the query changes at all, even

an extra space, the profile will no longer match the query.

 SQL Tuning – Gathering Optimizer Statistics
Optimizer statistics must be manually gathered after any process that changes a large

percentage of data. Optimizer statistics should be automatically gathered by the default

auto-task for incremental data changes.

Take a minute to re-read the previous paragraph; the majority of performance

problems are caused by not following that simple advice. Too many developers ignore

gathering statistics, perhaps because they think “gathering stats is a DBA’s job.” Too many

DBAs mess up automatic statistics gathering, perhaps because they encountered a bug

10 years ago and think they can still create a better job than Oracle.

 Manual Statistics
Without good statistics the optimizer cannot function properly. If a table is going to

be involved in queries after that table is loaded or changed then we must immediately

gather statistics. Large table changes should be followed by a call to DBMS_STATS.

GATHER_TABLE_STATS.

There’s no perfect definition for what constitutes a “large” table change. For the

optimizer, the percentage is more important than the absolute number. Adding 100

rows to a table with only 1 row is more significant than adding a billion rows to a table

that already has a billion rows. For global temporary tables almost any change could be

considered large, since the tables are empty to begin with.

The package DBMS_STATS should be used to gather statistics – do not use the

semi- deprecated ANALYZE command. The most important functions in DBMS_STATS are

GATHER_TABLE_STATS and GATHER_SCHEMA_STATS. Those functions have a large number

of parameters and it’s worth becoming familiar with most of them. The following list

includes the required and most important parameters.

Chapter 18 Improve SQL performanCe

500

 1. ownname/tabname: The schema owner and table name.

 2. estimate_percent: The amount of data to sample. We almost

always want to leave this parameter alone. The default gathers

100% with a fast, approximate-number-of- distinct-values

algorithm. For extra-large tables it may be helpful to use a tiny

value like 0.01.

 3. degree: The degree of parallelism. This parameter can

significantly improve the performance of gathering statistics

on large objects. Some parts of statistics gathering, such as

histograms, are not improved by parallelism. For extreme statistics

gathering performance we may need to look into concurrency

instead.

 4. Cascade: Are statistics also gathered on related indexes. Defaults

to TRUE.8

 5. no_invalidate: By default the statistics will not necessarily be

applied to all existing execution plans. Invalidating a huge number

of plans could cause performance problems, so the invalidations

are done gradually over time. The default is TRUE, but in practice

most dependent execution plans are immediately invalidated.

However, if we want to be sure that our statistics immediately take

effect we may want to set this parameter to FALSE.

 6. method_opt: Determines which histograms to gather. By default

histograms are created for columns with skewed data, if those

columns have also been used in a condition in a query.

There are several times when statistics are gathered as a side effect of other

operations and we don’t need to repeat the gathering. 12c has a new feature where

statistics can be automatically gathered when loading table data. If our execution plans

have the operation OPTIMIZER STATISTICS GATHERING then we probably do not need to

re-gather statistics. Creating or rebuilding indexes automatically gathers index statistics,

so we may be able to save a lot of time with the parameter CASCADE=>FALSE.

8 The default is supposed to automatically decide whether or not to gather index statistics.
But in practice the default is effectively TRUE. See this question for details:https://dba.
stackexchange.com/q/12226/3336.

Chapter 18 Improve SQL performanCe

https://dba.stackexchange.com/q/12226/3336
https://dba.stackexchange.com/q/12226/3336

501

 Automatic Statistics
Oracle comes with a default job to automatically gather statistics. The scheduler

jobs are created by AutoTasks, which can be monitored from the data dictionary views

DBA_AUTOTASK_*. By default the AutoTask runs every night and gathers statistics on all

tables that were changed by more than 10%.

There are many times when performance problems will magically disappear because

of automatic statistics collection. And there are rare times when performance problems

magically appear – sometimes gathering better statistics leads to a worse execution plan.

Even when performance problems disappear it is useful to understand why. We can

track the statistics collection history through columns like DBA_TABLES.LAST_ANALYZED

and the data dictionary view DBA_OPTSTAT_OPERATIONS.

The statistics job should be working preventively and gathering statistics before

problems happen. We cannot rely on that job to solve all of our problems. We still need

to manually gather statistics. Performance cannot always wait for nightly stats job.

If we encounter problems with the default AutoTask we can set preferences to help

the job work better. For example, if a large table is taking too long we can set the table

preference to gather statistics in parallel:

--Gather optimizer statistics in parallel.

begin

 dbms_stats.set_table_prefs(user, 'TEST1', 'DEGREE', 8);

end;

/

We can set preferences for all of the GATHER_TABLE_STATS parameters. There are

other available preferences, such as INCREMENTAL (a special algorithm for partitioned

tables), and STALE_PERCENTAGE (the percentage of rows that must be modified to trigger

gathering, defaults to 10%).

 Other Statistics
There are many weird types of statistics, to match our weird data. The ASSOCIATE

STATISTICS command lets us associate custom selectivity and costs with schema

objects like functions. DBMS_STATS contains self-explanatory functions that let us

GATHER_FIXED_OBJECTS_STATS and GATHER_DICTIONARY_STATS, which can improve the

Chapter 18 Improve SQL performanCe

502

performance of data dictionary queries. We can even create fake statistics using

DBMS_STATS.SET_* functions.

Dynamic sampling is automatically used when statistics are missing, or for parallel

statements that run long enough to justify spending more time gathering statistics. The

optimizer has a hard enough time figuring out declarative cardinalities; it doesn’t even

try to estimate the cardinality of table functions or object types. For procedural code the

optimizer always guesses 8168 rows. We can use dynamic sampling to generate better

estimates, as shown in the following code.

--Dynamic sampling to estimate object types.

explain plan for

select /*+dynamic_sampling(2) */ column_value

from table(sys.odcinumberlist(1,2,3));

select * from table(dbms_xplan.display(format => 'basic +rows +note'));

Plan hash value: 1748000095

--

| Id | Operation | Name | Rows |

--

| 0 | SELECT STATEMENT | | 3 |

| 1 | COLLECTION ITERATOR CONSTRUCTOR FETCH| | 3 |

--

Note

 - dynamic statistics used: dynamic sampling (level=2)

The preceding results show a perfect cardinality estimate due to dynamic sampling.

When dynamic sampling doesn’t work, either because it’s too slow or because the

 estimate is bad, we may need to hardcode an estimate with the undocumented

CARDINALITY hint.

Extended statistics let the optimizer capture information about expressions or

relationships between columns. For example, in the table ENGINE_PROPELLANT there

is a strong correlation between the columns PROPELLANT_ID and OXIDIZER_OR_FUEL.

Propellants are almost always used exclusively as either an oxidizer or a fuel.

Chapter 18 Improve SQL performanCe

503

If we query the table with two conditions, PROPELLANT_ID = 1 and

OXIDIZER_OR_FUEL = 'fuel', the optimizer incorrectly thinks that both conditions

reduce the number of rows. That faulty assumption will incorrectly shrink the cardinality

estimates. We can tell the optimizer about this relationship, and get more accurate

cardinality estimates, by using the following code to create extended statistics:

--Extended statistics on ENGINE_PROPELLANT.

select dbms_stats.create_extended_stats(

 ownname => sys_context('userenv', 'current_schema'),

 tabname => 'ENGINE_PROPELLANT',

 extension => '(PROPELLANT_ID,OXIDIZER_OR_FUEL)')

from dual;

 Summary
Investigating performance problems and fixing them with cryptic hints is fun. But the

most important performance tips are not found in SQL tuning guides. Performance is

about having a good development and testing process that allows quick experiments,

knowledge of advanced features and objects, and a style that makes SQL easier to

understand and debug.

When we tune SQL statements, we must remember to use actual numbers to find

the slow statements, slow operations, and bad cardinalities. We need a breadth-first

approach and the ability to use multiple tools to find the most relevant information

quickly. Combining our knowledge of algorithmic complexity, cardinality, operations,

transformations, and dynamic optimizations, we should have an idea of what a better

execution plan could look like. There are many ways to fix execution plans, and we

should strive to use the cleanest approach. Ideally, we can improve the optimizer

statistics and solve the root causes of our problems.

Chapter 18 Improve SQL performanCe

PART V

Solve Anything with
Oracle SQL

507
© Jon Heller 2019
J. Heller, Pro Oracle SQL Development, https://doi.org/10.1007/978-1-4842-4517-0_19

CHAPTER 19

Solve Challenging
Problems with Arcane
SQL Features
It’s time to discuss the most advanced Oracle features. These features can solve

extremely challenging problems; the kind of problems that many developers think are

impossible to solve in a database.

We need to be cautious before using these features. Just because we can use a feature

doesn’t mean we should use it. Half of the features in this chapter I’ve only used for code

golf, to solve a ridiculous challenge. The other half I’ve used in real-world systems, where

a rare SQL feature really saved the day.

First we need to honestly evaluate the cost and benefits of building so much logic in

our databases. Then we can briefly describe Oracle’s most arcane features.

 Oracle vs. the Unix Philosophy
One of the age-old questions in software engineering is do we build one large system

or multiple small systems that work together? The more we use these esoteric Oracle

features, the more we’re choosing a monolithic solution over of a modular solution.

We want to avoid over-using a single tool and falling victim to the golden hammer

anti-pattern; when all we have is a hammer everything looks like a nail. The technology

industry is constantly moving from large proprietary systems on expensive servers to

small open source programs on commodity hardware. The Unix philosophy embraces

using many small tools and chaining them together.

508

On the other hand, we don’t want solutions with too many pieces. A common

example of this problem is system administration scripts that combine shell scripting,

cron, SQL, SQL*Plus, and many operating system commands. All of these pieces are

fine individually. When combined, these technologies require a lot of different skills,

and there will likely be problems integrating them. Many times it’s simpler to replace a

combination of technologies with a single, scheduled PL/SQL procedure. We need to

consider both approaches.

I’m not trying to convince you to use Oracle for everything. Oracle is not the best

tool for spreadsheet processing, regular expression matching, polymorphism, web

application front ends, fine-grained access, search engines, or data mining. But I would

like to convince you that there are times when you should consider using Oracle for all

of those tasks. If we’ve already built an Oracle solution, there’s a huge advantage to being

able to leverage our existing infrastructure, knowledge, and relational interfaces.

 MODEL
The MODEL clause enables procedural logic inside a SQL statement. MODEL lets us process

data like a multidimensional array or a spreadsheet. We can partition our data, define

dimensions and measures, and apply rules and FOR loops.

The price we pay for those cool features is a complex syntax. Every time I use MODEL I

have to re-read parts of the “SQL for Modeling” chapter of the Data Warehousing Guide.

This feature is best demonstrated with an unrealistic example. Let’s build a cellular

automaton in SQL. A cellular automaton is a grid of cells where each cell has a state of

on or off. After an initial state, all cells are recreated depending on a set of rules. The

rules determine the new state of a cell based on the state of cell’s neighbors. You’ve seen

cellular automatons before if you’ve ever played Conway’s Game of Life.

To keep things simple we’ll use an elementary cellular automaton, which is

represented as a one-dimensional array. The cells in the array change each generation

based on the state of the cell to the left, itself, and the cell to the right.

Chapter 19 Solve Challenging problemS with arCane SQl FeatureS

509

Figure 19-1 shows the cellular automatons we’re going to build in SQL.

Creating the cellular automatons in Figure 19-1 is a four-step process. The first step

is to create a two-dimensional array of data. The second step is where the MODEL magic

happens, where we step through the two-dimensional array and populate values based

on the state and the rules. The third step is a simple aggregation to turn each array into

a string. Finally, we need to copy and paste the results into a text editor and zoom out to

see the results.

--Cellular automata with MODEL. On is "#", off is " ".

--#3: Aggregate states to make a picture.

select listagg(state, '') within group (order by cell) line

from

(

 --#2: Apply cellular automata rules with MODEL.

Figure 19-1. Elementary cellular automatons created by the MODEL clause

Chapter 19 Solve Challenging problemS with arCane SQl FeatureS

510

 select generation, cell, state from

 (

 --#1: Initial, mostly empty array.

 select generation, cell,

 --Seed first generation with "#" in the center.

 case

 when generation=0 and cell=120 then '#'

 else ' '

 end state

 from

 (select level-1 generation from dual connect by level <= 120)

 cross join

 (select level-1 cell from dual connect by level <= 240)

)

 model

 dimension by (generation, cell)

 measures (state)

 rules

 (

 --Comment out rules to set them to ' ' (off).

 --Interesting patterns: 18 (00010010) 110 (01101110)

 state[generation >= 1, any] =

 case

 state[cv()-1, cv()-1] || --left

 state[cv()-1, cv()] || --middle

 state[cv()-1, cv()+1] --right

 --when '###' then '#'

 when '## ' then '#'

 when '# #' then '#'

 --when '# ' then '#'

 when ' ##' then '#'

 when ' # ' then '#'

 when ' #' then '#'

 --when ' ' then '#'

Chapter 19 Solve Challenging problemS with arCane SQl FeatureS

511

 else ' '

 end

)

)

group by generation

order by generation;

The first step, creating an empty array, is simple enough. That step creates a table

of data with a unique GENERATION and CELL coordinate for each value. The first step can

be accomplished by using the CONNECT BY LEVEL trick twice and then cross-joining the

results. You may want to highlight and run the first inline view to understand how this

complex query begins.

The second step is the important one, where the MODEL clause is used. We create

a two-dimensional array with DIMENSION BY (GENERATION, CELL). Then we define a

measure, the state that will be calculated, with MEASURES (STATE). In the RULES clause,

we read and write the states.

We want to change the state for all cells, except the generation which has the initial

state: STATE[GENERATION >= 1, ANY] =. The left-hand side of the rule uses square

brackets for array access, contains conditions to limit the dimensions, and uses the

ANY keyword. The right-hand side references the array three times – for the left parent,

the middle parent, and the right parent. For example, to reference the state of the left

parent is STATE[CV()-1, CV()-1]. The CV() function gets the current value, and then

we subtract one to get the parent generation and to get the cell to the left. The state uses

a hash character for ON and a space for OFF, and the eight rules are commented out to

enable a specific set of rules.

Cellular automata look cool but are not exactly practical. More practical examples

of the MODEL clause would duplicate spreadsheet logic, to solve complicated inventory

calculations or create loan amortization schedules. I’ve only used the MODEL clause a few

times for real-world queries, for solving graph problems like transitive closures. Oracle

SQL is definitely not the best language for solving graph queries. However, since my data

was already in a database, using MODEL was much easier than adding another tool to the

system.

If we ever think “this programming problem can’t possibly be solved in pure SQL,”

we should try the MODEL clause.

Chapter 19 Solve Challenging problemS with arCane SQl FeatureS

512

 Row Pattern Matching
Row pattern matching is a powerful way to find patterns in our data. The REGEXP

functions enable searching for regular expressions within a single value. Analytic

functions can be used to find simple row patterns, like consecutive or non-consecutive

values. The MATCH_RECOGNIZE clause is a new 12c feature that lets us use regular

expressions to find complex patterns between rows.

For example, we can use row pattern matching to help us find patterns in the

number of launches per year. While analytic functions can find years that decrease or

increase, analytic functions are not good enough for finding more specific patterns.

The following code uses row pattern matching to find where the number of launches

decreased for 2 or more years.

--Years where launches decreased two years in a row or more.

select *

from

(

 --Count of launches per year.

 select

 to_char(launch_date, 'YYYY') the_year,

 count(*) launch_count

 from launch

 group by to_char(launch_date, 'YYYY')

 order by the_year

)

match_recognize

(

 order by the_year

 measures

 first(down.the_year) as decline_start,

 last(down.the_year) as decline_end

 one row per match

 after match skip to last down

 --Declined for two or more years.

 pattern (down down+)

Chapter 19 Solve Challenging problemS with arCane SQl FeatureS

513

 define

 down as down.launch_count < prev(down.launch_count)

)

order by decline_start;

DECLINE_START DECLINE_END

------------- -----------

...

 1977 1978

 1980 1986

 1988 1996

...

The MATCH_RECOGNIZE syntax is verbose so I’ll let most of the preceding code

speak for itself. The most interesting part of the query is where we define the regular

expression: PATTERN (DOWN DOWN+). Once we’ve got the initial query built, it’s easy

to play around with different patterns. We could easily find series of years where the

number of launches increased or where the number of launches seesawed back and

forth, etc.

 Any Types
If we don’t know what our data looks like ahead of time, we need the ability to process

“anything.” Oracle provides three object types that can help us pass and process

completely generic data. ANYDATA contains a single value of any type. ANYTYPE contains

type information about the data. ANYDATASET contains a collection of any types of data.

For example, the following function accepts an ANYDATA and returns a text version of

the value stored inside the ANYDATA. This function isn’t very useful because even creating

a trivial example of ANYDATA requires a lot of weird code.

--Function that uses ANYDATA to process "anything".

create or replace function process_anything(p_anything anydata)

 return varchar2

is

 v_typecode pls_integer;

 v_anytype anytype;

Chapter 19 Solve Challenging problemS with arCane SQl FeatureS

514

 v_result pls_integer;

 v_number number;

 v_varchar2 varchar2(4000);

begin

 --Get ANYTYPE.

 v_typecode := p_anything.getType(v_anytype);

 --Inspect type and process accordingly.

 if v_typecode = dbms_types.typecode_number then

 v_result := p_anything.GetNumber(v_number);

 return('Number: '||v_number);

 elsif v_typecode = dbms_types.typecode_varchar2 then

 v_result := p_anything.GetVarchar2(v_varchar2);

 return('Varchar2: '||v_varchar2);

 else

 return('Unexpected type: '||v_typecode);

 end if;

end;

/

The following query shows that we can choose the data types at run time:

--Call PROCESS_ANYTHING from SQL.

select

 process_anything(anydata.ConvertNumber(1)) result1,

 process_anything(anydata.ConvertVarchar2('A')) result2,

 process_anything(anydata.ConvertClob('B')) result3

from dual;

RESULT1 RESULT2 RESULT3

--------- ----------- --------------------

Number: 1 Varchar2: A Unexpected type: 112

In practice, most highly generic programming in SQL or PL/SQL is a mistake. To

do anything interesting with data, we have to have an idea of what that data looks like.

The ANY types are neat, but they have some strange bugs and performance problems.

Before we invest too much effort on a solution using an ANY type, we should ensure that

the program can scale. Almost all of our database processing should be done in boring

Chapter 19 Solve Challenging problemS with arCane SQl FeatureS

515

strings, numbers, and dates. Instead of one smart function that accepts anything, it is

usually better to dynamically generate a dumb function for each type.

 APEX
Application Express (APEX) is a free web-based development environment for creating

websites. APEX integrates seamlessly with an Oracle database and makes creating front

ends for our data almost trivial.

To recreate the examples in this section, we need to install APEX on our database or

create a free account at https://apex.oracle.com. After we install or create an account,

we need to create a workspace, which is a collection of applications. Then we need to

create an application, which is a collection of pages.

When inside the application, there are two main utilities – SQL Workshop and App

Builder. In SQL Workshop we can quickly create, edit, and run SQL queries and SQL*Plus

scripts.

If you installed APEX on your local database, then APEX already has access to the

space data set. If you are using Oracle’s website, then you need to load some sample

data. See this chapter’s worksheet in the repository for a tiny amount of sample data. On

Oracle’s website you will need to create a script, copy and paste the commands from the

repository, and then run the script.

After the data is loaded, we get to the most important part of APEX – the App Builder.

After creating an application, which is done with a few simple clicks, it’s time to create

a page. To show how simple creating a page is, here are the entire steps: click “Create

Page,” click “Interactive Report,” enter “Launch” for the Page Name, click “Next” twice,

choose the LAUNCH table from the drop-down list, click “Create.” To see the page, click the

Run Page button, enter a username and password, and then we should see something

like Figure 19-2:

Chapter 19 Solve Challenging problemS with arCane SQl FeatureS

https://apex.oracle.com

516

This simple example only scratches the surface of APEX’s features. We can use

APEX to build complex interactive forms, reports, charts, REST services, custom

authentication, or anything else we might find on a modern website. Simple pages

can be built with a few button clicks. For intermediate level pages, we can use our SQL

skills to define the data. For advanced pages we can use custom SQL, PL/SQL, CSS, and

JavaScript.

Unlike other features in this book, using APEX introduces significant security

concerns. I’m not implying there are any specific security vulnerabilities with APEX, but

any website should be reviewed for security issues. Before sharing our APEX pages with

others, we should at least spend time reading about APEX security and run the APEX

advisor to check for security problems.

APEX is a great choice if we want to quickly create a front end for an Oracle database.

Figure 19-2. APEX launch report

Chapter 19 Solve Challenging problemS with arCane SQl FeatureS

517

 Oracle Text
Oracle Text lets us build powerful search engine functionality in an Oracle database.

Built-in functions and custom PL/SQL functions are good enough for most text

searching. Oracle Text is useful if we need a tool that understands language. Oracle

Text features include fuzzy matching (matching different spellings of the same words),

stopwords (minor words not worth indexing), case, thesauruses, different languages,

and more.

Oracle Text works by creating indexes on existing tables. There are three different

index types, each with different purposes, syntax, and properties. CONTEXT is for indexing

large documents and uses the CONTAINS operator. CTXCAT is for indexing text fragments

combined with other columns and uses the CATSEARCH operator. CTXRULE is used for

document classification and uses the MATCHRULE operator.

For example, let’s search for GPS launches in the LAUNCH table. The MISSION column

contains unstructured text, and dozens of the launches contain the string GPS. The

following code is the simplest way to write a query to look for GPS:

--GPS launches using LIKE operator.

select count(*) total

from launch

where lower(mission) like '%gps%';

TOTAL

 72

The preceding query will always use a full table scan. Even a function-based index

on the expression LOWER(MISSION) will not help. B-tree indexes sort data by the leading

characters in the value. A B-tree index can help us find 'gps% ', but a B-tree index

cannot help us find '%gps '.

Text indexes work with words and can imitate a leading wildcard search. Use the

following code to create a CONTEXT index on LAUNCH.MISSION:

--Create CONTEXT index on MISSION.

--(Text indexes need CREATE TABLE privileges on schema owner.)

grant create table to space;

create index launch_mission_text

 on launch(mission) indextype is ctxsys.context;

Chapter 19 Solve Challenging problemS with arCane SQl FeatureS

518

Using Oracle Text indexes requires changing the predicates. Instead of using LIKE

we need to use CONTAINS. CONTAINS returns a score for ranking relevancy. If we’re just

looking for the existence of a word, we can filter with > 0.

The following query uses the CONTAINS operator and returns the same number of

rows as the LIKE operator. The execution plan shows the CONTEXT index in a DOMAIN NAME

operation.

--GPS launches using CONTAINS operator.

explain plan for

select count(*) total

from launch

where contains(mission, 'gps', 1) > 0;

select * from table(dbms_xplan.display(format => 'basic'));

Plan hash value: 4034124262

--

| Id | Operation | Name |

--

| 0 | SELECT STATEMENT | |

| 1 | SORT AGGREGATE | |

| 2 | DOMAIN INDEX | LAUNCH_MISSION_TEXT |

--

One of the downsides to CONTEXT indexes is that they are not automatically updated

after each transaction. We must manually synchronize the index like this:

--Synchronize index after DML on the LAUNCH table.

begin

 ctx_ddl.sync_index(idx_name =>

 sys_context('userenv', 'current_schema')||

 '.launch_mission_text');

end;

/

The preceding example only shows one of the many uses of Oracle Text. There are

many more features described in the 299-page Text Application Developer’s Guide.

Chapter 19 Solve Challenging problemS with arCane SQl FeatureS

519

 Other Features
Oracle has many other features that significantly extend the capabilities of the database.

This section only briefly discusses some of the less popular options and features.

Although these options are uncommon, they are not small. Most of these features are the

subject of one or more books in the Oracle documentation library. Some developers may

spend a large part of their career working with one of these options.

 Advanced Analytics (Data Mining)
The Oracle Advanced Analytics licensable option contains tools, algorithms, and APIs

for machine learning. The Data Mining APIs are available in SQL and PL/SQL, and

those interfaces let us create and train models on relational tables. There’s even a SQL

Developer plug-in to help us create data mining solutions. Advanced Analytics can also

call the statistical programming language R and connect to big data sources like Hadoop.

There are certainly more popular choices for machine learning frameworks. Oracle’s

advantage is the time to production. If the data is already in a database, it’s faster to

move the algorithms to the data than it is to move the data to the algorithms.

 Spatial
The Spatial licensable option can create geographic information systems in Oracle.

Spatial can store, index, and query geometric information. Operations like joining take

on a completely different meaning with geometric shapes.

 OLAP
Online analytical processing is a different way of querying data. OLAP uses a

multidimensional model and used to be a popular choice for data warehouses and

business intelligence applications. There are many stand-alone OLAP products, but

Oracle’s OLAP is a licensable option embedded in the database. The option allows

creating dimensions, cubes, and other OLAP structures. The product also comes with a

separate Analytic Workspace Manager GUI.

Chapter 19 Solve Challenging problemS with arCane SQl FeatureS

520

OLAP is not as common as it used to be, and the core Oracle database is gradually

adding OLAP-like features. For example, recent versions have added ANALYTIC VIEW,

ATTRIBUTE DIMENSION, DIMENSION, and HIERARCHY to the database, without the need for

an OLAP license.

 Property Graph
Property graph is a tool for analyzing graphs, data that consists of vertexes and the edges

between them. Property graph is part of the Spatial licensable option. With property

graph we can query existing Oracle tables using property graph query language (PGQL).

PGQL is a SQL-like language. Unfortunately, PGQL is not embedded in Oracle SQL. Even

evaluating property graph would require multiple external tools. Hopefully a future

version of Oracle will better integrate PGQL with the database.

 Virtual Private Database
Virtual Private Database augments normal database security with fine-grained access

controls. Through VPD we can transparently insert predicates into relevant SQL

statements to enforce access rules.

Setting up VPD requires several objects to work together. A logon trigger initializes

a context, and that context will identify the users and their access. A package contains a

function, and that function uses the context to return the right predicate. A policy must

be set up to tie the functions to specific tables.

For example, VPD could restrict each user to only see rows in the LAUNCH table that

are related to their assigned site. Any query against the LAUNCH table will automatically

include that predicate. For example, a user might run the query SELECT * FROM LAUNCH,

but Oracle may secretly run SELECT * FROM LAUNCH WHERE SITE_ID = 1.

VPD is a neat feature that solves unique security problems. But we should be

careful before using VPD. Changing security through triggers and secret predicates can

be confusing. Even administrators are affected, and they may not see the results they

expect. And the execution plan will not show the added predicates. If we build a VPD

system, we must thoroughly document the system and share that documentation with all

users and administrators.

Chapter 19 Solve Challenging problemS with arCane SQl FeatureS

521

 Database In-Memory
Database In-Memory can significantly improve query performance by storing data in

a columnar format. The columnar format allows superior compression, SIMD vector

processing, in-memory storage indexes, join groups, optimized aggregation, etc. The in-

memory column store can be useful if we have to process a large amount of data based

on a small number of columns.

Columnar format is not always better, and Oracle will still store data in rows, blocks,

disks, and the traditional memory structures. The in-memory licensable option was

added in 12c and requires allocating additional memory for columnar storage.

 Advanced Compression
The advanced compression licensable option enables better compression features.

Basic compression works per block and only works for direct-path writes. Advanced

compression can compress data better and can work with regular DML statements.

Advanced compression also enables CLOB compression and deduplication.

Compression features aren’t just about saving space; saving space can also improve

performance because Oracle has less data to read from disk.

 Summary
Whenever someone asks, “can I do this in an Oracle database?”, the answer is always

“yes.” We don’t want to solve everything in Oracle, but the option always exists. Oracle

is much more than a simple bit bucket. If our organization has already invested a lot of

time and money into Oracle, we shouldn’t ignore the arcane features discussed in this

chapter.

Chapter 19 Solve Challenging problemS with arCane SQl FeatureS

523
© Jon Heller 2019
J. Heller, Pro Oracle SQL Development, https://doi.org/10.1007/978-1-4842-4517-0_20

CHAPTER 20

Use SQL More Often with
Advanced Dynamic SQL
SQL is Oracle’s greatest strength. Dynamic SQL is important because it gives us more

opportunities to use SQL. Chapter 14 introduced the basic features: using dynamic SQL for

DDL, unknown objects, and simplifying privileges; EXECUTE IMMEDIATE and bind variable

syntax; simplifying dynamic code with multiline strings, alternative quoting syntax, and

templating; and the benefit of generating code instead of creating generic code.

Now it’s time to discuss advanced dynamic SQL. These features let us push Oracle

to its limits, and let us walk the line between overly generic madness and epic solutions.

Programming is hard enough, programming programs is incredibly difficult.

The topics discussed here should only be used after careful consideration. There’s

usually a simpler, more boring way to solve our problems. But it’s worth remembering

these solutions because some of the toughest programming problems cannot be solved

without advanced dynamic SQL.

 Parsing
Parsing SQL is ridiculously hard and was even listed as an anti-pattern in Chapter 15.

The Oracle SQL syntax is huge and cannot be accurately parsed with a mere string

function or regular expression. When possible we should look for ways to constrain our

code; if we can force code to look a certain way, then a simple string function may be

sufficient.

As our input code becomes more generic, we must become more creative in our

solutions. Parsing is one of those problems where we do not want to jump straight to

the most powerful programs, because the most powerful programs have huge learning

curves. If we’re lucky, our problem has already been solved and is stored somewhere in

524

the data dictionary. A fair number of code inspection problems can be solved with data

dictionary views like VSQL, VSQL_PLAN, DBA_DEPENDENCIES, DBMS_XPLAN.DISPLAY, and

other data dictionary views and tools. For more complex problems, we should look at

tools like PL/Scope, PLSQL_LEXER, and ANTLR.

 PL/Scope
PL/Scope is a tool for inspecting the identifiers and SQL statements used in PL/SQL

programs. The information PL/Scope provides can help with simple code analysis

and dependencies. PL/Scope doesn’t provide a huge amount of information, but the

program is easily accessible and accurate.

For example, we can analyze a small program by setting a session variable and

recompiling:

--Generate identifier information.

alter session set plscope_settings='identifiers:all';

create or replace procedure temp_procedure is

 v_count number;

begin

 select count(*)

 into v_count

 from launch;

end;

/

The PL/Scope data is stored in the data dictionary and can be read with a query

like this:

--Identifiers in the procedure.

select

 lpad(' ', (level-1)*3, ' ') || name name,

 type, usage, line, col

from

(

 select *

 from user_identifiers

Chapter 20 Use sQL More often with advanCed dynaMiC sQL

525

 where object_name = 'TEMP_PROCEDURE'

) identifiers

start with usage_context_id = 0

connect by prior usage_id = usage_context_id

order siblings by line, col;

NAME TYPE USAGE LINE COL

----------------- --------------- ----------- ---- ---

TEMP_PROCEDURE PROCEDURE DECLARATION 1 11

 TEMP_PROCEDURE PROCEDURE DEFINITION 1 11

 V_COUNT VARIABLE DECLARATION 2 4

 NUMBER NUMBER DATATYPE REFERENCE 2 12

Since Oracle 12.2 we can also get information about the SQL statements called by the

program:

--Statements in the procedure.

select text, type, line, col, sql_id

from user_statements;

TEXT TYPE LINE COL SQL_ID

--------------------------- ------ ---- --- -------------

SELECT COUNT(*) FROM LAUNCH SELECT 4 4 046cuu31c149u

PL/Scope provides high-level information but it cannot truly parse our programs.

In practice, I’ve rarely found a use for PL/Scope. Even for a task like identifying

dependencies PL/Scope is often insufficient because the program only finds static

dependencies.

 PLSQL_LEXER
Language problems require breaking a program into small pieces. The smallest pieces

would be bytes and characters, but those are too low level to be useful. The atomic units

of parsing are tokens. A token is a sequence of characters categorized in a way to be

useful to a compiler. Lexical analysis is the process of breaking a program into tokens.

Even a lexical analysis of SQL or PL/SQL is too difficult for small string functions or

regular expressions. Features like comments and the alternative quoting mechanism

make it difficult to pull a token out of the middle of a program. I built the open source

Chapter 20 Use sQL More often with advanCed dynaMiC sQL

526

package PLSQL_LEXER1 to break SQL and PL/SQL into tokens. Once we have tokens we

can begin to understand the code, change the tokens, and re-assemble the tokens into a

new version of the program. The following is a simple example of creating tokens from a

SQL statement:

--Tokenize a simple SQL statement.

select type, to_char(value) value, line_number, column_number

from plsql_lexer.lex('select*from dual');

TYPE VALUE LINE_NUMBER COLUMN_NUMBER

---------- ------ ----------- -------------

word select 1 1

* * 1 7

word from 1 8

whitespace 1 12

word dual 1 13

EOF 1 17

The preceding output is very low level, which is exactly what we need to dynamically

analyze and modify programs. With tokens we can do things like classify a statement

(because dynamic SQL must treat a SELECT different than a CREATE), remove statement

terminators (because dynamic SQL cannot have a semicolon at the end), etc. Working

with tokens is painful but necessary to solve challenging language problems.

 ANTLR
ANTLR is an open source parser generator that can understand and modify almost any

programming language. ANTLR comes with a pre-built PL/SQL lexer and parser that can

be used to break SQL and PL/SQL into parse trees. These parse trees are similar to the

railroad diagrams in the language references.

1 The example assumes you have installed https://github.com/method5/plsql_lexer.

Chapter 20 Use sQL More often with advanCed dynaMiC sQL

https://github.com/method5/plsql_lexer

527

After a lot of downloading, configuring, and compiling, we can generate parse trees

with a command like this:

C:\ >grun PlSql sql_script -gui

BEGIN

 NULL;

END;

/

^Z

The preceding code will open a GUI with the parse tree shown in Figure 20-1:

ANTLR is the most powerful parsing tool for Oracle SQL and PL/SQL. But there

are many issues with the program; the code is in Java which may not work in our

database, the PL/SQL grammar is not complete, and generating the parse tree is only the

beginning of the real work.

Figure 20-1. ANTLR parse tree for simple PL/SQL program

Chapter 20 Use sQL More often with advanCed dynaMiC sQL

528

 DBMS_SQL
DBMS_SQL is the original way to run dynamic SQL. DBMS_SQL is much less convenient than

EXECUTE IMMEDIATE, and not as fast, but it has several advantages. Only DBMS_SQL can be

used to execute SQL over a database link, parse2 the SQL and retrieve column metadata,

and return or bind an unknown number of items.

For example, the following code parses a SQL statement, finds the column type and

name, runs the statement, and retrieves the results. DBMS_SQL doesn’t need to do all of

those things at once. Sometimes we only want to parse the results to verify a statement or

inspect the return types, other times we only want to execute the statement and retrieve

the results. The following code shows DBMS_SQL working with both data and metadata.

--Example of dynamically retrieving data and metadata.

declare

 v_cursor integer;

 v_result integer;

 v_value varchar2(4000);

 v_count number;

 v_cols dbms_sql.desc_tab4;

begin

 --Parse the SQL and get some metadata.

 v_cursor := dbms_sql.open_cursor;

 dbms_sql.parse(v_cursor, 'select * from dual',

 dbms_sql.native);

 dbms_sql.describe_columns3(v_cursor, v_count, v_cols);

 dbms_sql.define_column(v_cursor, 1, v_value, 4000);

 --Execute and get data.

 v_result := dbms_sql.execute_and_fetch(v_cursor);

 dbms_sql.column_value(v_cursor, 1, v_value);

 --Close cursor.

 dbms_sql.close_cursor(v_cursor);

 --Display metadata and data.

2 Although DBMS_SQL can parse SQL, it does not make the entire parse tree available the way
ANTLR does. DBMS_SQL can only solve a small number of our parsing problems.

Chapter 20 Use sQL More often with advanCed dynaMiC sQL

529

 dbms_output.put_line('Type: '||

 case v_cols(1).col_type

 when dbms_types.typecode_varchar then 'VARCHAR'

 --Add more types here (this is painful)...

 end

);

 dbms_output.put_line('Name: '||v_cols(1).col_name);

 dbms_output.put_line('Value: '||v_value);

end;

/

Type: VARCHAR

Name: DUMMY

Value: X

The preceding syntax is tricky, we’ll probably need to look at the manual whenever

we write code for DBMS_SQL. The package also has some unexpected behavior. The PARSE

function automatically runs DDL commands, so we need to be careful even describing

statements. Despite the problems, DBMS_SQL is still a great tool to programmatically

inspect, build, and run SQL statements.

 DBMS_XMLGEN
DBMS_XMLGEN.GETXML is a useful function that converts the results of a query into an XML

type. The following is a simple example of the function:

--Convert query to XML.

select dbms_xmlgen.getxml('select * from dual') result

from dual;

<?xml version="1.0"?>

<ROWSET>

 <ROW>

 <DUMMY>X</DUMMY>

 </ROW>

</ROWSET>

Chapter 20 Use sQL More often with advanCed dynaMiC sQL

530

GETXML was probably only intended to convert relational data into XML for storage or

processing in another system. Notice how the query is passed as a string, which means

the query is not checked at compile time. That minor design choice lets us do some

surprisingly interesting things with the function.

We can dynamically generate and run the query based on another query. With

careful code generation and XML parsing, we can query tables that may not exist, return

values from an unknown set of tables, etc. Most importantly, we can run dynamic SQL

entirely in SQL. There is no need to create any PL/SQL objects.

For example, the following query counts all tables in the SPACE schema that have a

name like LAUNCH*.

--Number of rows in all LAUNCH* tables in SPACE schema.

--

--Convert XML to columns.

select

 table_name,

 to_number(extractvalue(xml, '/ROWSET/ROW/COUNT')) count

from

(

 --Get results as XML.

 select table_name,

 xmltype(dbms_xmlgen.getxml(

 'select count(*) count from '||table_name

)) xml

 from all_tables

 where owner = sys_context('userenv', 'current_schema')

 and table_name like 'LAUNCH%'

)

order by table_name;

TABLE_NAME COUNT

------------------ -----

LAUNCH 70535

LAUNCH_AGENCY 71884

LAUNCH_PAYLOAD_ORG 21214

...

Chapter 20 Use sQL More often with advanCed dynaMiC sQL

531

Using XML is a bit tricky because we have to parse the results, and we still need to

know something about the output columns ahead of time. Unfortunately, the query

string can be constructed but cannot use a bind variable. And Oracle’s XML processing

also isn’t as robust as its relational engine. SQL queries can easily handle millions

of rows, but when processing XML we need to be more careful or we will run into

performance problems with medium-sized data sets.

 PL/SQL Common Table Expressions
We can also run dynamic SQL inside SQL using PL/SQL common table expressions. We

can define a function in a SQL statement and call EXECUTE IMMEDIATE in that function.

We need to use PL/SQL but we don’t have to create and manage any permanent PL/SQL

objects.

For example, the following query returns the same results as the last query:

--Number of rows in all LAUNCH* tables in the current schema.

with function get_rows(p_table varchar2) return varchar2 is

 v_number number;

begin

 execute immediate 'select count(*) from '||

 dbms_assert.sql_object_name(p_table) into v_number;

 return v_number;

end;

select table_name, get_rows(table_name) count

from all_tables

where owner = sys_context('userenv', 'current_schema')

 and table_name like 'LAUNCH%'

order by table_name;

/

The preceding query is more robust than the DBMS_XMLGEN.GETXML technique. But

PL/SQL common table expressions do not work in every context, and the feature was

introduced in 12.1. And both techniques still require knowledge about the shape of the

result set.

Chapter 20 Use sQL More often with advanCed dynaMiC sQL

532

 Method4 Dynamic SQL
Dynamic SQL statements can be ranked by how generic they are. Oracle provides four

methods for running dynamic SQL. Method 1 is for non-query statements, method 2

is for non-query statements with bind variables, method 3 is for queries that return a

known number of items, and method 4 is for queries that returns an unknown number

of items. So far in this book, even when dynamic SQL was used, the programs still knew

what output to expect. SQL becomes much more difficult when we don’t even know

what the statements will return.

Applications frequently use method 4 technologies. For example, our IDE can work

with any query and determine the columns at run time. And many applications can

consume a dynamically generated ref cursor, which does not necessarily have a known

set of columns. It’s rare for a SQL or PL/SQL program to need a solution as generic as

method 4.

First, a word of caution is in order. While it’s fun to build generic programs, it’s quite

unusual in a database to have no idea what the results will be. In order to do anything

useful with data, we generally at least need to know the shape of the data. In practice, the

vast majority of SQL programs with a method 4 solution would be better served by hard-

coding the columns.

We can build a method 4 solution in SQL using Oracle data cartridge. Data cartridge

provides interfaces that let us significantly extend the database. Data cartridges can be

used to build custom indexes (such as Oracle Text), custom analytic functions, custom

statistics, and functions with dynamic return types.

Building data cartridges is challenging and requires using the ANY types to fully

describe all possible inputs and outputs. Luckily, there are pre-built open source

solutions, such as my unoriginally named Method4 program.3 For example, we can

recreate the count-all-the-LAUNCH-tables query with the following SQL statement:

--Method4 dynamic SQL in SQL.

select * from table(method4.dynamic_query(

q'[

 select replace(

 q'!

 select '#TABLE_NAME#' table_name, count(*) count

3 The example assumes you have installed https://github.com/method5/method4.

Chapter 20 Use sQL More often with advanCed dynaMiC sQL

https://github.com/method5/method4

533

 from #TABLE_NAME#

 !', '#TABLE_NAME#', table_name) sql_statement

 from all_tables

 where owner = sys_context('userenv', 'current_schema')

 and table_name like 'LAUNCH%'

]'

))

order by table_name;

The preceding example returns the same results as the previous two queries. But this

new version has an important difference; the first line of the query uses * instead of a

hard-coded list of columns. In Method4 we can dynamically generate different columns

each time. Writing a query inside a query, inside a query, leads to weird-looking strings.

Those complex strings are the price we pay to reach the pinnacle of query flexibility.

 Polymorphic Table Functions
Polymorphic table functions are a new feature in 18c and they also have a dynamically

generated return type. The shape of the query is typically defined by the input table and

an optional list of columns.

The following example creates a polymorphic table function that doesn’t do

anything particularly useful. The function merely returns everything from the input

table. Creating a fully functional sample would take too much space. Even generating

this mostly worthless function is complicated enough.

--Create polymorphic table function package.

create or replace package ptf as

 function describe(p_table in out dbms_tf.table_t)

 return dbms_tf.describe_t;

 function do_nothing(tab in table)

 return table pipelined

 row polymorphic using ptf;

end;

/

create or replace package body ptf as

Chapter 20 Use sQL More often with advanCed dynaMiC sQL

534

 function describe(p_table in out dbms_tf.table_t)

 return dbms_tf.describe_t as

 begin

 return null;

 end;

end;

/

With the preceding package in place, we can call the DO_NOTHING function against

any table, and the function will return the entire output of that table.

--Call polymorphic table function.

select * from ptf.do_nothing(dual);

DUMMY

X

The preceding output is rather unimpressive so we’ll need to use our imagination

here. Polymorphic functions let us do anything we want with the input and let us return

anything for the output. The functions are fully described in the PL/SQL Language

Reference as well as the DBMS_TF package in the PL/SQL Packages and Types Reference.

We could create a generic conversion function to turn any table, or any SQL

statement, into JSON, CSV, XML, or any other format. We can almost create our own

SQL syntax. We could dynamically change columns and column names, create our own

definition of how * works, dynamically pivot, and probably lots of weird things I can’t

even imagine.

Polymorphic table functions are more powerful than the Method4 program.

However, polymorphic table functions are new in 18c and are driven by complex PL/SQL

instead of simple SQL statements.

 Method5
We can take the idea of a dynamic result set one step further. In addition to dynamically

specifying what to run, we can also dynamically specify where to run it. The open source

program Method5 creates a new type of dynamic SQL that lets us query and control

hundreds of databases with a single SQL statement.

Chapter 20 Use sQL More often with advanCed dynaMiC sQL

535

For example, we can quickly ping all our databases with this small SQL statement4:

select *

from m5

(

 p_code => 'select * from dual',

 p_targets => '%'

);

DATABASE_NAME DUMMY

------------- -----

db01 X

db02 X

db03 X

...

Method5 is designed more for administrators than developers, but the program is a

good example of the powerful solutions we can build with Oracle’s advanced features.

We can build remote execution programs, and manage a fleet of databases and hosts,

from inside a single Oracle database.

 Summary
Parsing and dynamic SQL can be challenging and rewarding. With the right advanced

packages and features, we can solve any problem in Oracle. It’s worth investing the extra

effort to build advanced dynamic solutions so we can leverage Oracle’s most powerful

feature – SQL.

The dynamic solutions discussed in this chapter used either small amounts of PL/

SQL or pre-packaged PL/SQL objects. There’s not a pre-built package for every problem;

eventually we will need to create our own advanced objects, like a table function that

runs dynamic SQL and returns rows of data as a collection. The next chapter completes

the discussion of advanced SQL by introducing PL/SQL.

4 The example assumes you have installed Method5 from https://method5.github.io/.

Chapter 20 Use sQL More often with advanCed dynaMiC sQL

https://method5.github.io/

537
© Jon Heller 2019
J. Heller, Pro Oracle SQL Development, https://doi.org/10.1007/978-1-4842-4517-0_21

CHAPTER 21

Level Up Your
Skills with PL/SQL
If you use Oracle SQL long enough, you will eventually want to learn PL/SQL. SQL is the

primary language for Oracle development, but we at least need PL/SQL to package our

work. The first step in PL/SQL development is to create a safe playground for learning

PL/SQL. There’s not enough room here for a full PL/SQL tutorial, but we can at least

discuss the PL/SQL features most likely to help us enhance our SQL. To become a true

Oracle master, you’ll need PL/SQL to help you teach others and create programs.

 Is PL/SQL Worth Mastering?
Before you spend even more time learning Oracle, it’s worth briefly considering if Oracle

PL/SQL is worth investing in. There are technology trends moving away from products

like Oracle SQL and PL/SQL, and there are arguments against specialization.

Learning the proprietary PL/SQL language means we are betting a part of our career

on the fortunes of Oracle Corporation and the market for relational databases. Oracle

Corporation is one of the largest software companies in the world, SQL is one of the most

popular programming languages, Oracle has the largest market share of any relational

database, and PL/SQL is the best procedural language extension for SQL. On the other

hand, Oracle Corporation’s revenue is stagnant and their cloud business is struggling,

technologies like NoSQL are growing at the expense of relational databases, and open

source technologies and languages are growing at the expense of proprietary code.

We also need to consider the argument about being a technology generalist instead

of a specialist. We don’t want to be a jack of all trades, master of none. On the other

hand, developers with a broad background and a resume that looks like alphabet soup

are what recruiters look for.

538

There are great reasons to learn more about PL/SQL, but at some point our time

might be better spent learning a completely different language.

 The Focus Is Still on SQL
No matter where you go from here with Oracle database development, the focus remains

on SQL. PL/SQL is a great language precisely because it integrates so well with SQL. PL/

SQL is considered more advanced than SQL but advanced does not always mean better.

Compared with SQL, PL/SQL is only advanced in the sense that it is more

complicated. PL/SQL code is rarely faster or simpler than SQL code. We must resist the

urge to use obscure PL/SQL features instead of ordinary SQL features. For example,

parallel pipelined functions are a neat way to parallelize PL/SQL code. That feature is

better than single-threaded PL/SQL, but the best option is still a single parallel SQL

statement.

 Create a PL/SQL Playground
We need a safe playground to learn new skills. Building a sandbox can be challenging in

conservative Oracle development environments. Many developers don’t have private

databases, private schemas, or even the privileges to create objects. But even in the

worst-case environment we can still learn PL/SQL.

Obviously we can learn PL/SQL in the cloud, through websites like http://

sqlfiddle.com/ or https://livesql.oracle.com/. It’s easiest to learn skills directly

related to our job, but we can’t load our organization’s data onto a public website.

Luckily, there are tricks that let us create PL/SQL code on any database and require no

additional privileges.

Anonymous blocks are the best way to get started with PL/SQL in a highly limited

environment. We can run anonymous blocks that don’t change anything, without

anyone ever knowing. This book has used many simple anonymous blocks, but

anonymous blocks don’t have to be simple. We can use anonymous blocks to imitate

large stored procedures and functions. The following example shows an anonymous

block with an embedded function, and the function has an embedded procedure.

Chapter 21 LeveL Up YoUr SkiLLS with pL/SQL

http://sqlfiddle.com/
http://sqlfiddle.com/
https://livesql.oracle.com/

539

--PL/SQL block with nested procedure and function.

declare

 v_declare_variables_first number;

 function some_function return number is

 procedure some_procedure is

 begin

 null;

 end some_procedure;

 begin

 some_procedure;

 return 1;

 end some_function;

begin

 v_declare_variables_first := some_function;

 dbms_output.put_line('Output: '||v_declare_variables_first);

end;

/

Output: 1

We can embed functions and procedures as deep as necessary to imitate large

packages. To practice using PL/SQL objects in SQL code, we can use PL/SQL common

table expressions. As long as we have access to an Oracle database, there’s always a way

to experiment with PL/SQL.

 PL/SQL Integration Features
This chapter is not a full PL/SQL tutorial. Much of the basic syntax, like variable

assignment, IF statements, and looping, can be learned through osmosis. And much

of the syntax works the same in both SQL and PL/SQL; most operators, expressions,

conditions, and functions work the same way in both languages.

PL/SQL has many of the same benefits as SQL. PL/SQL is a high-level language

meant for processing data and is highly portable. A PL/SQL program written for HP-UX

on Itanium will work just fine on Windows on Intel x86-64.

Chapter 21 LeveL Up YoUr SkiLLS with pL/SQL

540

To fully understand the PL/SQL language, I recommend reading the PL/SQL

Language Reference. The manual is the most accurate source although it isn’t always

the easiest to read. This chapter only focuses on the PL/SQL features that promote

integration between SQL and PL/SQL.

 Tips for Packaging Code
The first and most obvious tip for packaging our code is to use PACKAGEs to encapsulate

related code. We don’t want to pollute a schema with all our procedures and functions.

A simple rule to help with organizing code is to think of packages as nouns and their

procedures and functions as verbs.

By default, procedures, functions, and variables should only be defined in the

package body, making them private. Procedures, functions, and variables defined in

the package specification are public. We always want to minimize the number of entry

points and public interfaces to our programs. Every part of our program that we expose

to the world is another thing we have to support and maintain.

When we build programs for other developers, we must think carefully about the

program’s dependencies. Other developers may not have Enterprise Edition, the latest

version, elevated privileges, the ability to dedicate an entire schema to a project, optional

components like Java, licensed options like partitioning, etc.

 Session Data
There are several ways to store and share data in a session using PL/SQL. This chapter

is about PL/SQL, but remember that in most cases the best way to share data is with a

simple table or possibly a global temporary or private temporary table. After tables, the

best way to store and pass data is with the package state – global PL/SQL variables that

persist for the duration of the session.

There are a few rules to remember when setting and getting global public and

global private variables in packages. Global public variables are easier to access but

are considered a bad programming style because we can’t control how they are set

and accessed. If we must have global variables, we should at least make them private,

which require getters and setters. The getter functions can be called in SQL, whereas

Chapter 21 LeveL Up YoUr SkiLLS with pL/SQL

541

even global public variables can’t be accessed directly through SQL. The following code

shows these rules in action:

--Create a package with global public and private variables.

create or replace package test_package is

 g_public_global number;

 procedure set_private(a number);

 function get_private return number;

end;

/

--Create a package body that sets and gets private variables.

create or replace package body test_package is

 g_private_global number;

 procedure set_private(a number) is

 begin

 g_private_global := a;

 end;

 function get_private return number is

 begin

 return g_private_global;

 end;

end;

/

--Public variables can be read or set directly in PL/SQL.

begin

 test_package.g_public_global := 1;

end;

/

--Private variables cannot be set directly, this raises

--"PLS-00302: component 'G_PRIVATE_GLOBAL' must be declared"

begin

 test_package.g_private_global := 1;

end;

/

Chapter 21 LeveL Up YoUr SkiLLS with pL/SQL

542

--Public variables still cannot be read directly in SQL.

--This raises "ORA-06553: PLS-221: 'G_PUBLIC_GLOBAL' is not

-- a procedure or is undefined"

select test_package.g_public_global from dual;

--Setters and getters with private variables are preferred.

begin

 test_package.set_private(1);

end;

/

--This function can be used in SQL.

select test_package.get_private from dual;

GET_PRIVATE

 1

Global variables create a package state that persists until the session ends. The

error “ORA-04068: existing state of packages has been discarded” may be frustrating,

but the error is usually our own fault. If we create global variables, and the package is

recompiled, Oracle can’t possibly know what to do with the existing package state. The

best way around that error is to avoid using global variables unless we truly need them.

Sometimes it is helpful to store data in a context and read it with the SYS_CONTEXT

function. Context data has been used several times throughout this book, such as SYS_

CONTEXT('USERENV', 'CURRENT_SCHEMA'). Many of our session settings are available

through the default USERENV context, but we can also create our own contexts. Custom

contexts can be useful for passing data to parallel statements, since parallel sessions do

not inherit package state.

As we create session data, we must remember that our resources are not infinite.

Session data will consume PGA memory so we should avoid loading large tables into

PL/SQL variables all at once. Sessions also consume PGA for sorting and hashing, as

well as temporary tablespace for sorting and hashing, and may require lots of undo

data for large and long-running statements. If we use connection pooling, we may need

to clear package state and memory at the beginning of every call, with the procedures

DBMS_SESSION.RESET_PACKAGE and DBMS_SESSION.FREE_UNUSED_USER_MEMORY. A basic

understanding of Oracle architecture is helpful for managing session resources.

Chapter 21 LeveL Up YoUr SkiLLS with pL/SQL

543

 Transactions I – COMMIT, ROLLBACK, and SAVEPOINT
Atomicity is one of the greatest strengths of a relational database – changes are either

completely committed or not committed at all. Oracle provides the mechanisms for

atomicity, but it’s up to us to use transaction controls to create a logical definition of an

atomic operation. Our PL/SQL code may include many DML statements and we need to

use COMMIT, ROLLBACK, and SAVEPOINT to ensure that our changes make sense.

Oracle automatically begins a transaction after any DML statement and does not

auto-commit (except for DDL commands like TRUNCATE, CREATE, or DROP). We should

only issue a COMMIT when a logical unit of work is done. We do not want to blindly

commit after every change. Over-committing may cause performance problems and

may cause a weird half-changed state if there is an error.

There is a subtle difference between a ROLLBACK command and a rollback caused by

an error. The ROLLBACK command will undo all uncommitted changes in the transaction.

An implicit rollback, caused by an exception, will only undo the statement. Implicit

rollbacks act like a rollback to a SAVEPOINT created at the beginning of the PL/SQL block.

To demonstrate transaction control, we need to start by creating a simple table for

our examples:

--Create a simple table for transaction tests.

create table transaction_test(a number);

Exceptions do not automatically roll back the entire transaction. If we run the

following commands, the initial INSERT will work, the UPDATE will fail, but the table still

contains the row created by the INSERT.

--Insert one row:

insert into transaction_test values(1);

--Fails with: ORA-01722: invalid number

update transaction_test set a = 'B';

--The table still contains the original inserted value:

select * from transaction_test;

A

-

1

Chapter 21 LeveL Up YoUr SkiLLS with pL/SQL

544

The code behaves differently in PL/SQL because a PL/SQL block is considered a

single statement. If we package the preceding two commands in a PL/SQL block, the

results will be different. The INSERT statement will succeed and the UPDATE will fail, but

in this case the failure causes the rollback of the entire statement, which includes the

INSERT.

--Reset the scratch table.

truncate table transaction_test;

--Combine good INSERT and bad UPDATE in a PL/SQL block.

--Raises: "ORA-01722: invalid number"

begin

 insert into transaction_test values(1);

 update transaction_test set a = 'B';

end;

/

--The table is empty:

select * from transaction_test;

A

-

This behavior means that we usually do not need to create extra EXCEPTION blocks

only to include a ROLLBACK command. A PL/SQL exception is already going to roll back

the whole block. If we include an explicit ROLLBACK command, it will roll back the entire

transaction, including things that happened before the PL/SQL block.

If we already have an EXCEPTION block for some other purpose, we still probably

don’t need to include a ROLLBACK as long as we also include a RAISE. As long as the

exception is propagated, the statement will roll back.

If we remember how implicit statement rollback works, we can avoid unnecessary

exception handling, like in the following example:

--Unnecessary exception handling.

begin

 insert into transaction_test values(1);

 update transaction_test set a = 'B';

exception when others then

Chapter 21 LeveL Up YoUr SkiLLS with pL/SQL

545

 rollback;

 raise;

end;

/

On the other hand, we would run into a different problem if we foolishly tried to

ignore all exceptions with code like EXCEPTION WHEN OTHERS THEN NULL. Adding such

an exception handler to the preceding code could cause a half-committed transaction,

where the INSERT is committed but the UPDATE is not.

While it’s safe to rely on implicit rollbacks of PL/SQL blocks, we cannot always rely

on implicit rollbacks for our SQL client. SQL*Plus, like most SQL clients, by default will

COMMIT on a successful exit and ROLLBACK if the session was abnormally terminated. But

that default behavior is configurable in SQL*Plus and other clients. It’s always safest to

include a COMMIT or ROLLBACK at the end of our work.

 Transactions II – Implicit Cursor Attributes
Implicit cursor attributes are often useful for managing transactions. After a DML

statement we often want to know how many rows were affected. The number of rows

can be useful for logging or for determining if the statement was successful. We can use

SQL%ROWCOUNT to find the number of rows affected, but we must reference implicit cursor

attributes before a COMMIT or ROLLBACK. The following example shows how to correctly

and incorrectly use SQL%ROWCOUNT.

--Correct: SQL%ROWCOUNT is before ROLLBACK.

begin

 insert into transaction_test values(1);

 dbms_output.put_line('Rows inserted: '||sql%rowcount);

 rollback;

end;

/

Rows inserted: 1

--Incorrect: SQL%ROWCOUNT is after ROLLBACK.

begin

 insert into transaction_test values(1);

Chapter 21 LeveL Up YoUr SkiLLS with pL/SQL

546

 rollback;

 dbms_output.put_line('Rows inserted: '||sql%rowcount);

end;

/

Rows inserted: 0

 Transactions III – Row-Level Locking
Combining SQL statements in PL/SQL becomes much more complicated in a multiuser

environment. Every database handles locking differently and luckily Oracle’s implementation

of a multiversion consistency model avoids some common traps. Due to the way Oracle

implements locking, we don’t have to worry about readers and writers blocking each other.

But every consistency and locking system has subtle details we need to watch out for.

A good way to demonstrate Oracle’s row-level locking mechanism is with a weird

example. The following code demonstrates that the initial wait is based on a row-level

lock, but subsequent waits are based on the transaction. With SAVEPOINT and ROLLBACK,

a transaction can release a lock without completing, creating an opportunity for another

session to “steal” a lock.

--Session #1: These commands all run normally.

insert into transaction_test values(0);

commit;

savepoint savepoint1;

update transaction_test set a = 1;

--Session #2: This command hangs, waiting for the locked row.

update transaction_test set a = 2;

--Session #1: Rollback to the previous savepoint.

--Notice that session #2 is still waiting.

rollback to savepoint1;

--Session #3: This command steals the lock and completes.

--Notice that session #2 is still waiting, on a row that is

-- no longer locked.

update transaction_test set a = 3;

commit;

Chapter 21 LeveL Up YoUr SkiLLS with pL/SQL

547

Locks are not stored in a separate table, locks are stored inside data blocks, in the

Interested Transaction List. The ITL lists which transaction is locking each row. When

session #2 tried to lock a row, it saw that session #1 already had the lock. Session #1 gives

up the row and changes the ITL, but session #2 doesn’t know that. Session #2 can’t be

expected to check the individual rows – that would require constantly re-reading the

tables. Instead, session #2 is waiting for session #1 to finish, which it never does. Rolling

back to a save point gives up a lock but doesn’t end the transaction. This creates an

opportunity for session #3 to jump the queue and steal the lock.

We could argue that Oracle doesn’t really implement row-level locking if we were

able to “steal” a lock like this. In practice this situation is very unlikely to ever occur.

This example is not a warning, it’s only meant to teach how row-level locking works by

demonstrating one of its quirks.

 Transactions IV – Isolation and Consistency
Oracle provides mechanisms to allow our PL/SQL applications to act like they are the

only database user. This isolation is necessary to avoid transaction integrity problems

such as dirty reads (reading uncommitted data from another transaction) and non-

repeatable or phantom reads (running the same query twice in a transaction and

getting different results). Oracle provides two different isolation levels to prevent those

problems.

The default isolation level is called read committed. Read committed mode

prevents dirty reads and ensures that every statement is consistent. Statement-level

consistency means that a single SQL statement will always read and process data as of a

specific point of time. If another session deletes all the rows in the middle of our query,

we won’t notice.

For example, the following SQL statement reads from the LAUNCH table twice. The

following query will always return the same results for each COUNT(*), regardless of what

read or write operations other sessions are executing. This statement-level consistency is

provided by the undo data that is generated by every change.

--These subqueries will always return the same number.

select

 (select count(*) from transaction_test) count1,

 (select count(*) from transaction_test) count2

from dual;

Chapter 21 LeveL Up YoUr SkiLLS with pL/SQL

548

Consistency gets more difficult when we use multiple queries in PL/SQL. If

consistency only applies within a statement, then the following PL/SQL block may

return different numbers for the same query run at two different times.

--These queries may return different numbers.

declare

 v_count1 number;

 v_count2 number;

begin

 select count(*) into v_count1 from transaction_test;

 dbms_output.put_line(v_count1);

 dbms_lock.sleep(5);

 select count(*) into v_count2 from transaction_test;

 dbms_output.put_line(v_count2);

end;

/

If we use a serializable transaction, then everything in the query happens as of the

beginning of the transaction. If we change the session’s isolation level, the previous

example will always return the same numbers within the same transaction. The only

difference between these PL/SQL blocks is the SET TRANSACTION command, but that

command makes a big difference.

--These queries will always return the same number.

declare

 v_count1 number;

 v_count2 number;

begin

 set transaction isolation level serializable;

 select count(*) into v_count1 from transaction_test;

 dbms_output.put_line(v_count1);

 dbms_lock.sleep(5);

 select count(*) into v_count2 from transaction_test;

 dbms_output.put_line(v_count2);

end;

/

Chapter 21 LeveL Up YoUr SkiLLS with pL/SQL

549

Enabling a serializable transaction doesn’t magically solve all our problems. It

ensures transaction-level read consistency, but it can’t fix problems with writing data.

If another session changes data in the middle of a serializable transaction, and the

serializable transaction tries to change the same rows, it will raise the exception “ORA-

08177: can't serialize access for this transaction.” We may need to preemptively lock the

rows we’re processing with a SELECT ... FOR UPDATE command.

 Simple Variables
Moving data between SQL and PL/SQL is easy because their type systems are so

compatible. We rarely need to worry about issues like formatting, precision, character

sets, and size limitations when we move numbers, dates, and strings between SQL and

PL/SQL. Unfortunately, the type systems do not perfectly match so we need to be aware

of how to work around some issues.

The %TYPE attribute can help us safely transfer data between SQL and PL/

SQL. Instead of hard-coding a data type, we can set a variable to always match a

column’s data type. The following code uses %TYPE and avoids the need to specify exactly

how large the data from LAUNCH_CATEGORY can be. If a future version of the space data set

increases the column size, the PL/SQL variable size will also increase. Synchronizing the

data types can avoid errors like “ORA-06502: PL/SQL: numeric or value error: character

string buffer too small.”

--Demonstrate %TYPE.

declare

 v_launch_category launch.launch_category%type;

begin

 select launch_category

 into v_launch_category

 from launch

 where rownum = 1;

end;

/

Booleans are allowed in PL/SQL but not SQL. The lack of native SQL Booleans is

inconvenient whenever need to store, compare, and convert Boolean data. PL/SQL

happily uses the keywords TRUE and FALSE, but these keywords do not work in SQL.

Chapter 21 LeveL Up YoUr SkiLLS with pL/SQL

550

The first step in dealing with Booleans is to create a table that is properly constrained

to only allow specific data. There is no standard, we have to decide if we want to use

“Yes/No”, “YES/NO”, “Y/N”, “1/0”, “True/False”, “sí/no”, etc. We should enforce our choice

with a check constraint because inevitably someone will try to use an unexpected value.

--A table designed for Boolean data.

create table boolean_test

(

 is_true varchar2(3) not null,

 constraint boolean_test_ck

 check(is_true in ('Yes', 'No'))

);

Booleans are easy to compare in PL/SQL. As the following conversion code

demonstrates, we don’t need to check for = TRUE or = FALSE, we can simply use the

value as a condition. But we have to change the Boolean into a string before we can

insert the value into a table.

--Convert PL/SQL Boolean to SQL Boolean.

declare

 v_boolean boolean := true;

 v_string varchar2(3);

begin

 v_string := case when v_boolean then 'Yes' else 'No' end;

 insert into boolean_test values(v_string);

 rollback;

end;

/

VARCHAR2 types have a different maximum size in SQL and PL/SQL. The default

maximum size in SQL is 4000 bytes and the maximum size in PL/SQL is 32,767 bytes.

Oracle 12.2 can be modified to allow 32,767 bytes in SQL, but only if the parameter MAX_

STRING_SIZE is changed. Modifying that parameter is a surprisingly difficult process with

significant performance implications, since large strings are internally stored as CLOBs

instead of VARCHAR2. I doubt many organizations have changed MAX_STRING_SIZE, so

to be safe we should assume the SQL limit is still 4,000 bytes.

PL/SQL has extra data types such as PLS_INTEGER and BINARY_INTEGER. A lot of

built-in functions return PLS_INTEGER and that data type has some performance benefits

Chapter 21 LeveL Up YoUr SkiLLS with pL/SQL

551

compared to NUMBER. But we shouldn’t go out of our way to convert NUMBER to PLS_

INTEGER, unless we’re coding small loops or doing scientific programming.

 Cursors
Cursors are pointers to SQL statements. There are many ways to create and manipulate

cursors. Features like the explicit open/fetch/close syntax, ref cursors, FORALL, and LIMIT

have their uses, but these features are geared toward PL/SQL-centric solutions. For

SQL-centric solutions we want to focus on these three types of cursor processing: SELECT

INTO, the cursor FOR loop, and SELECT BULK COLLECT INTO. Table 21-1 describes when

we want to use these three techniques.

Table 21-1. When to Use Different Cursor Types

One Row Many Rows

Static SQL SELECT INTO Cursor FOR loop

Dynamic SQL SELECT INTO SELECT BULK COLLECT INTO

SELECT INTO is best for static or dynamic queries that return one row. This syntax

has already been used a few times in this book because it’s the fastest and easiest way

to get simple values. The following is a simple example of the static and dynamic SQL

syntax:

--Static and dynamic SELECT INTO for one row.

declare

 v_count number;

begin

 select count(*) into v_count from launch;

 execute immediate 'select count(*) from launch' into v_count;

end;

/

Problems happen when a SELECT INTO query returns zero rows or more than one row.

Queries that return zero rows will raise the exception “ORA-01403: no data found.” Queries

that return more than one row will raise the exception “ORA-01422: exact fetch returns

more than requested number of rows.” But a raised exception is easy to handle. The tricky

part of SELECT INTO is when something goes wrong but an exception is not raised.

Chapter 21 LeveL Up YoUr SkiLLS with pL/SQL

552

In PL/SQL, every SELECT must have an INTO. It makes no sense to run a query and do

nothing with the results. In the preceding example, if we remove the INTO V_COUNT from

the static query, the PL/SQL block understandably raises the exception “PLS-00428: an

INTO clause is expected in this SELECT statement.” But if we remove the INTO V_COUNT

from the dynamic query, the query is partially run and the PL/SQL block does not raise

an exception.

The worst silent errors happen when the no-data-found exception is raised in a SQL

context. For example, look at the following function. This function combines a SELECT

INTO with WHERE 1=0, a recipe for no-data-found exceptions. Yet when the function is

run in a SQL statement, the function returns NULL instead of raising an exception.

--This function fails yet does not raise an exception in SQL.

create or replace function test_function return number is

 v_dummy varchar2(1);

begin

 select dummy into v_dummy from dual where 1=0;

 return 999;

end;

/

select test_function from dual;

TEST_FUNCTION

SQL is built to work with things that return nothing (and by “nothing” I don’t mean

NULL, I mean no results at all). For example, a correlated subquery or an inline view

with a condition like WHERE 1=0 won’t return data but the statement will still run. We

expect SQL to work when no data is found, but we expect PL/SQL to fail when no data is

found. When we combine the two, we may not expect the no-data-found exception to be

ignored.

If we build a function that will be called in SQL, and there is a chance of a no-data- found

exception, we must catch and re-raise the error. Normally, catching and re-raising is a bad

idea, because it’s easy to lose details of the call stack. In this case, we have no choice. The

following function shows how to catch a no-data-found exception and raise a different kind

of exception that won’t be ignored by SQL.

Chapter 21 LeveL Up YoUr SkiLLS with pL/SQL

553

--This function re-raises NO_DATA_FOUND exceptions.

create or replace function test_function2 return number is

 v_dummy varchar2(1);

begin

 select dummy into v_dummy from dual where 1=0;

 return 999;

exception when no_data_found then

 raise_application_error(-20000, 'No data found detected.');

end;

/

--Raises: "ORA-20000: No data found detected.".

select test_function2 from dual;

We don’t need to include exception handling with every SELECT INTO. We only need

to re-raise exceptions for SELECT INTOs that will be called from SQL and have a chance of

returning zero rows.

Cursor FOR loops are best for static queries that return multiple rows. With a cursor

FOR loop, we don’t need to explicitly open and close the cursor, or define variables, or

worry about batching or limiting the results. Oracle takes care of all the details for us.

We’ve already seen code similar to the following example. This code is worth

repeating because too many developers waste too many lines of code dealing with

explicit cursors. All we need to do is loop through the results.

--Simple cursor FOR loop example.

begin

 for launches in

 (

 --Put huge query here:

 select * from launch where rownum <= 5

) loop

 --Do something with result set here:

 dbms_output.put_line(launches.launch_tag);

 end loop;

end;

/

Chapter 21 LeveL Up YoUr SkiLLS with pL/SQL

554

BULK COLLECT INTO is best for dynamic queries that return multiple rows. To use

this feature we first need to understand the basics of records and collections, which are

discussed in the next sections.

 Records
So far our PL/SQL variables have been simple, scalar types. Ideally, all our complex

data structures can be created as SQL cursors, and our PL/SQL code only needs scalar

variables. But when we must do more processing in PL/SQL, we must expand the

complexity of our PL/SQL data structures.

SQL data grows in complexity from a single column value to a row, to a table of rows.

PL/SQL data grows in complexity from a single scalar variable to a record, to a collection.

Figure 21-1 shows the relationship between the terminology for the relational model,

SQL, and PL/SQL.1

Records can be created in three different ways. Records can be defined through

%ROWTYPE, by creating a RECORD type, or with a user-defined type. Each technique has

different advantages. Using %ROWTYPE is the simplest and most accurate way to copy

1 This diagram is not strictly true for PL/SQL. A PL/SQL collection is not always made up of PL/
SQL records. We can bypass records, and build PL/SQL collections as sets of scalar variables.

Figure 21-1. Relational, SQL, and PL/SQL terminology for similar types. Based
on an image created by Chris Martin and is in the public domain.

Chapter 21 LeveL Up YoUr SkiLLS with pL/SQL

https://commons.wikimedia.org/wiki/User_talk:Chris-martin

555

a table’s data structure. Defining a RECORD type gives us complete control over the

type definition. User-defined types are defined in SQL instead of PL/SQL; they aren’t

technically records but they act in a similar way.

The following code shows the three different ways to define records. Record

definitions are often repetitive, so the example uses the simplest table in the space data

set, PROPELLANT. Notice how records use the dot notation to access the individual fields.

--Build user defined type, which is similar to PL/SQL record.

create or replace type propellant_type is object

(

 propellant_id number,

 propellant_name varchar2(4000)

);

--Example of %ROWTYPE, IS RECORD, and user defined type.

declare

 --Create variables and types.

 v_propellant1 propellant%rowtype;

 type propellant_rec is record

 (

 propellant_id number,

 propellant_name varchar2(4000)

);

 v_propellant2 propellant_rec;

 v_propellant3 propellant_type := propellant_type(null, null);

begin

 --Populating data works the same for all three options.

 v_propellant1.propellant_id := 1;

 v_propellant1.propellant_name := 'test1';

 v_propellant2.propellant_id := 2;

 v_propellant2.propellant_name := 'test2';

 v_propellant3.propellant_id := 3;

 v_propellant3.propellant_name := 'test3';

end;

/

Chapter 21 LeveL Up YoUr SkiLLS with pL/SQL

556

In practice, a record by itself is not particularly useful. If we only have one-

dimensional data, it would be easier to define multiple scalar variables. Records help

keep data together, and it’s easier to pass a record as a parameter than a long list of scalar

variables. The real benefit of records is when they are used as part of collections, to

create the PL/SQL equivalent of “tables” of data.

 Collections
Collections are sets of records or scalar variables. Collections can create

multidimensional data. Don’t let the word “multidimensional” scare you, in practice

it usually means two-dimensional data that looks like a table, although we can nest

data structures and create more complex shapes if we want. There are three types of

collections: nested tables, associative arrays, and varrays.

Nested tables are the most useful collection for integrating SQL and PL/SQL.

A nested table is an unordered heap of records, similar to the way a table is an unordered

heap of rows.

Nested tables can be easily populated with static and dynamic SQL, using the BULK

COLLECT INTO syntax demonstrated as follows. The following code uses %ROWTYPE to

define a nested table type and then creates a variable of that type. The nested table

variable, like all collections, has a COUNT property that can be used to loop through the

results. Each record can be accessed with a numeric index, using parentheses. And the

relevant field can be accessed using the dot notation.

--Define, populate, and iterate nested tables using %ROWTYPE.

declare

 type launch_nt is table of launch%rowtype;

 v_launches launch_nt;

begin

 --Static example:

 select *

 bulk collect into v_launches

 from launch;

 --Dynamic example:

 execute immediate 'select * from launch'

 bulk collect into v_launches;

Chapter 21 LeveL Up YoUr SkiLLS with pL/SQL

557

 --Iterating the nested table:

 for i in 1 .. v_launches.count loop

 dbms_output.put_line(v_launches(i).launch_id);

 --Only print one value.

 exit;

 end loop;

end;

/

Whenever we use BULK COLLECT INTO, we should think about the maximum

possible size of the collection. Collections use PGA memory and each session can only

be allocated a certain amount. If necessary we could use a loop and a LIMIT clause to

only retrieve N rows at a time. In practice, the LIMIT clause is over-used. The preceding

example puts the entire LAUNCH table into memory, which sounds bad until we realize

that the table only uses 4 megabytes of space, according to DBA_SEGMENTS. We might

get into trouble if we have hundreds of sessions running the code at the same time, but

otherwise we don’t need to worry about loading a few megabytes into memory.

If we have simple data, like a list of numbers or strings, we may not have to create

our own collection data types. Oracle already has many pre-built user-defined types that

are useful for collection processing. Two popular examples are SYS.ODCIVARCHAR2LIST

and SYS.ODCINUMBERLIST. Those types are VARRAY(32767) OF VARCHAR2(4000)/NUMBER.

Those aren’t the easiest names to remember, and the maximum number of elements

isn’t always large enough. On the plus side, those types are publicly available to all

schemas and are safe to use because they are listed in the manual and won’t suddenly

disappear in the next version.

Associative arrays are key-value pairs, known as hash maps or dictionaries in other

languages. This collection type is useful in PL/SQL but is not as convenient as nested

tables for working with SQL data.

Associative arrays can be indexed by either PLS_INTEGER or VARCHAR2, but an

associative array indexed by a number isn’t very different than a nested table. Associative

arrays are usually indexed by a string, which is convenient because it lets us use almost

anything as the key. Unfortunately, Oracle can only directly load SQL into associative

arrays indexed by numbers, not strings.

To build an associative array indexed by a string, we must loop through the rows

and build the collection ourselves. One advantage of associative arrays is that we can

create elements simply by referencing them, no need for an EXTEND function. Another

Chapter 21 LeveL Up YoUr SkiLLS with pL/SQL

558

advantage is that results are automatically sorted as they are loaded into the collection.

A disadvantage of associative arrays is that it’s a bit awkward to loop through the keys, as

shown in the following code.

--Define, populate, and iterate an associative array.

declare

 type string_aat is table of number index by varchar2(4000);

 v_category_counts string_aat;

 v_category varchar2(4000);

begin

 --Load categories.

 for categories in

 (

 select launch_category, count(*) the_count

 from launch

 group by launch_category

) loop

 v_category_counts(categories.launch_category) :=

 categories.the_count;

 end loop;

 --Loop through and print categories and values.

 v_category := v_category_counts.first;

 while v_category is not null loop

 dbms_output.put_line(v_category||': '||

 v_category_counts(v_category));

 v_category := v_category_counts.next(v_category);

 end loop;

end;

/

atmospheric rocket: 2600

ballistic missile test: 78

deep space: 184

...

Chapter 21 LeveL Up YoUr SkiLLS with pL/SQL

559

Varrays, variable-size arrays, are similar to nested tables. The differences between

varrays and nested tables only matter if we’re storing them in the database or if we’re

deleting items from the collections. To avoid breaking the relational model, we shouldn’t

store collections in a table anyway. And we should also avoid deleting items from

collections; it’s best to avoid loading unwanted elements in the first place, by using

better filtering in our SQL statements that load data.

There’s much more to the collection syntax than described in this section. There

are many PL/SQL functions for reading, inserting (EXTEND), deleting (DELETE), updating

(assignment), combining (MULTISET UNION/INTERSECT/EXCEPT), and loading collections

into SQL (FORALL and TABLE). If we stick with a SQL-first approach and simple nested

tables, we can usually avoid those features. If you need to do a lot of collection

processing, you might want to read the “PL/SQL Collections and Records” chapter of the

PL/SQL Language Reference.

 Functions
We can extend the functionality of our database with user-defined functions. A PL/SQL

function can accept arguments, execute procedural code, and return a value that can

be easily used in SQL. We can use functions to organize our code and avoid repeating

ourselves.

Procedures are similar to functions, except a procedure does not return a value.

Procedures can use OUT parameters to allow returning multiple values, but those

procedures cannot be directly called by SQL. (Functions can also have OUT parameters

but there’s rarely a reason to return data in multiple ways.) There’s not a huge difference

between functions and procedures, so only functions are discussed here. (Be careful if

you look online for a list of differences between functions and procedures. There are a

lot of myths surrounding the differences, probably because there’s a more significant

difference in other databases.)

As an example of a function, let’s say we want to calculate the orbital period of the

satellites – the time it takes for each satellite to orbit Earth. The SATELLITE table already

has an ORBIT_PERIOD column, so let’s see if we can duplicate it using the apogee (furthest

distance from Earth) and perigee (closest distance to Earth). The math behind Kepler’s

third law of planetary motion isn’t super-complicated, but we wouldn’t want to have to

repeat it in our SQL statements multiple times.

Chapter 21 LeveL Up YoUr SkiLLS with pL/SQL

560

--Calculate orbital period in minutes, based on apogee

--and perigee in kilometers. (Only works for Earth orbits.)

create or replace function get_orbit_period

(

 p_apogee number,

 p_perigee number

) return number is

 c_earth_radius constant number := 6378;

 v_radius_apogee number := p_apogee + c_earth_radius;

 v_radius_perigee number := p_perigee + c_earth_radius;

 v_semi_major_axis number :=

 (v_radius_apogee+v_radius_perigee)/2;

 v_standard_grav_param constant number := 398600.4;

 v_orbital_period number := 2*3.14159*sqrt(

 power(v_semi_major_axis,3)/v_standard_grav_param)/60;

 --pragma udf;

begin

 return v_orbital_period;

end;

/

Calling a custom function is as simple as calling a built-in function. The following

code compares the pre-calculated value with our custom function.

--Orbital periods for satellites.

select

 norad_id,

 orbit_period,

 round(get_orbit_period(apogee,perigee),2) my_orbit_period

from satellite

where orbit_period is not null

order by norad_id;

Chapter 21 LeveL Up YoUr SkiLLS with pL/SQL

561

NORAD_ID ORBIT_PERIOD MY_ORBIT_PERIOD

-------- ------------ ---------------

000001 96.18 96.19

000002 96.18 96.19

000003 103.73 103.73

...

Most of the values are a close match. There will be differences because of

rounding, satellites orbiting another planet, and probably many other complexities I’m

overlooking. The point of the GET_ORBIT_PERIOD function is that it encapsulates a lot of

logic that we wouldn’t want to see repeated in SQL statements.

The biggest problem with user-defined functions is the performance penalty. Oracle

SQL and PL/SQL are separate languages and there’s a small price to pay for context

switching between them. Also, if we use the function as a condition, the optimizer will

have to take a wild guess at how selective the condition is. And the function itself may

also be expensive.

If we have many user-defined functions, we should carefully track the number of times

our functions are called, using tools like V$SQL, execution plans, and the hierarchical profiler.

Luckily, there are several things we can do to potentially improve function performance.

Simply adding PRAGMA UDF cuts the run time in half. That pragma is new in version

12.1, and it tells the compiler to optimize the function for running in a SQL context.

We may also want to define the function with PARALLEL_ENABLE (to allow the SQL

statement to run in parallel), DETERMINISTIC (a promise to the compiler that the function

always returns the same results for the same inputs, thereby enabling some additional

optimizations and features), and RESULT_CACHE (to enable caching the function results,

which is useful if the function is frequently called with the same parameters). There are

even different compiler optimization settings that might be helpful.

In addition to performance problems, functions may also introduce consistency

issues. A SQL statement is consistent, but a recursive SQL statement inside a user-

defined function will read new data every time it’s executed.

 Table Functions
Table functions return collections that can be used in SQL statements. One common

example of table functions is used for displaying execution plans: SELECT * FROM

TABLE(DBMS_XPLAN.DISPLAY). We can build our own custom collections and table

Chapter 21 LeveL Up YoUr SkiLLS with pL/SQL

562

functions, thus creating another way for SQL and PL/SQL to modify and exchange

data. There are three kinds of table functions: regular table functions, pipelined table

functions, and parallel pipelined table functions.

Regular table functions return the entire collection all at once. Before we move to

more advanced pipelined functions or Oracle data cartridge, we should first consider

using a simple table function. The process of passing in a collection, processing the

collection, and returning a new collection is powerful enough for many tasks.

For example, let’s say we want to create a custom distinct function in PL/SQL. The

following code first creates a nested table to hold a collection of numbers. Then the code

creates a function that accepts a collection of numbers, runs the SET function to get

distinct values from the collection, and returns the new collection.

--Simple nested table and table function that uses it.

create or replace type number_nt is table of number;

create or replace function get_distinct(p_numbers number_nt)

return number_nt is

begin

 return set(p_numbers);

end;

/

We can use the preceding function to find all distinct launch apogees (the furthest

distance an object travels from Earth). The first step is to bundle the values into a

specific kind of collection, which is done with the CAST and COLLECT functions. Then the

collection is passed to the new function, which processes the data, and returns another

collection. Finally, the TABLE operator turns that new collection back into relational

results.

--Distinct launch apogees from a custom PL/SQL function.

select *

from table(get_distinct

((

 select cast(collect(apogee) as number_nt)

 from launch

)))

order by 1;

Chapter 21 LeveL Up YoUr SkiLLS with pL/SQL

563

COLUMN_VALUE

 0

 1

 2

...

The preceding example is small but it contains a lot of weird syntax and a lot of

parentheses. (Luckily, the table function syntax was simplified in version 12.2, which no

longer requires the TABLE operator.)

The preceding function is a poor version of SELECT DISTINCT APOGEE FROM LAUNCH.

The point of the code is to lay the groundwork for more useful functions. With a few

tweaks we can make our own custom aggregate functions. And the CAST COLLECT

aggregation trick also works for regular functions. Table functions are complex but at

least they’re simpler than alternatives like Oracle data cartridge. And the preceding

examples only show the simplest of uses. If we add dynamic SQL to a table function, we

can create functions that can run “anything” and return sets of data.

 Pipelined Functions
Pipelined functions are a special kind of table function. Pipelined functions return

collections but they return collections one row a time. Row-by-row processing is usually

a bad thing but in this case there are advantages. By returning rows immediately we can

chain the functions and have multiple steps of a process working concurrently.

The following is a simple pipelined function that returns three numbers. Notice how

the function definition includes the keyword PIPELINED. These functions do not RETURN

values, instead the function must call PIPE ROW for each row returned. Although the

function returns a collection, we only pipe one element at a time.

--Simple pipelined function.

create or replace function simple_pipe

return sys.odcinumberlist pipelined is

begin

 for i in 1 .. 3 loop

 pipe row(i);

 end loop;

Chapter 21 LeveL Up YoUr SkiLLS with pL/SQL

564

end;

/

select * from table(simple_pipe);

COLUMN_VALUE

 1

 2

 3

 Parallel Pipelined Functions
Making pipelined functions run in parallel requires a few special changes. Parallel

pipelined functions must be passed a cursor, must have a PARALLEL_ENABLE clause

that partitions the cursor, and must be called with a parallel hint. Setting up parallel

pipelined functions can be a challenge but can significantly improve performance.

The following code accepts any input cursor, but for the function to work properly,

the input cursor must select all the columns from the LAUNCH table. The cursor is iterated,

each row is stored in a record, and then a value is piped out. This function isn’t doing

anything particularly useful, it’s just demonstrating the concepts.

--Parallel pipelined function.

create or replace function parallel_pipe(p_cursor sys_refcursor)

return sys.odcinumberlist pipelined

parallel_enable(partition p_cursor by any) is

 v_launch launch%rowtype;

begin

 loop

 fetch p_cursor into v_launch;

 exit when p_cursor%notfound;

 pipe row(v_launch.launch_id);

 end loop;

end;

/

Chapter 21 LeveL Up YoUr SkiLLS with pL/SQL

565

The following code shows how to call the function. The query passes a SQL

statement to the function with the CURSOR keyword. To enable parallelism we need to use

a parallel hint. This example is not exactly a subquery; Oracle is not passing sets of data,

it’s only passing a pointer to a SQL statement.

--Call parallel pipelined function.

select *

from table(parallel_pipe(cursor(select /*+ parallel */ * from launch)));

COLUMN_VALUE

 49643

 49644

 49646

...

Pipelined functions are powerful tools but in practice they are over-used. An

advanced SQL statement is usually better than an advanced pipelined function.

 Autonomous Transactions for DML and DDL
SELECT statements are meant for reading data and should not change the state of the

database. In practice, there are important exceptions to that rule. There are times when

we desperately need to run DML or DDL from a function called by a SELECT statement.

If a function includes a change, and we call that function from SQL, we will get an

error like “ORA-14552: cannot perform a DDL, commit or rollback inside a query or

DML.” The way around that limitation is with a pragma – an instruction for the PL/SQL

compiler.

The following code demonstrates how to use PRAGMA AUTONOMOUS_TRANSACTION to

create and call a function that includes a DDL statement.

 --Function that changes the database.

create or replace function test_function

return number authid current_user is

 pragma autonomous_transaction;

Chapter 21 LeveL Up YoUr SkiLLS with pL/SQL

566

begin

 execute immediate 'create table new_table(a number)';

 return 1;

end;

/

--Call the function to create the table.

select test_function from dual;

TEST_FUNCTION

 1

The preceding function is usually a bad idea. SQL does not guarantee the order

of execution or even the number of times each piece will be executed. In theory, the

preceding function could be executed zero, one, or many times. In practice, if we test the

code carefully and do not change the way the function is called, these functions can be

reliable.

 Autonomous Transactions for Logging
A more common use of autonomous transactions is for maintaining logs. Most of our

programs should be instrumented to store metadata that can be useful for debugging

or performance tuning. This metadata is gathered while our programs are doing their

normal work, but it must be gathered in a slightly different way. When our applications

crash, they will often roll back any changes, but we do not want to roll back the log

entries. Autonomous transactions operate independently from the parent transaction.

For example, let’s create a simple application logging table and a program to create

log entries. Notice how the procedure is created with PRAGMA AUTONOMOUS_TRANSACTION.

--Create simple table to hold application messages.

create table application_log

(

 message varchar2(4000),

 the_date date

);

Chapter 21 LeveL Up YoUr SkiLLS with pL/SQL

567

--Autonomous logging procedure.

create or replace procedure log_it

(

 p_message varchar2,

 p_the_date date

) is

 pragma autonomous_transaction;

begin

 insert into application_log

 values(p_message, p_the_date);

 commit;

end;

/

Next, in a PL/SQL block, we’ll write to the table, create a log entry, and roll back the

transaction.

--Reset the scratch table.

truncate table transaction_test;

--Autonomous transaction works despite rollback.

begin

 insert into transaction_test values(1);

 log_it('Inserting...', sysdate);

 rollback;

end;

/

The LOG_IT procedure has a COMMIT but that COMMIT does not affect the parent

transaction. If we look at the tables, we can see that the original INSERT to the test table

was rolled back, but the INSERT into the logging table remains.

--The logging table has the original log message.

select count(*) from application_log;

COUNT(*)

 1

Chapter 21 LeveL Up YoUr SkiLLS with pL/SQL

568

--Even though the main transaction was rolled back.

select count(*) from transaction_test;

COUNT(*)

 0

Autonomous transactions let us keep our log entries even if the main program

crashes or rolls back. This is important because we’re most likely to need our logs when

there is an error or a rollback.

 Definer’s Rights vs. Invoker’s Rights
When we build PL/SQL objects, we have to make an important choice about privileges:

do the objects run with the privileges of the schema owner or the privileges of the

current user? These options are called definer’s rights and invoker’s rights. In the object

definition we can specify either AUTHID DEFINER or AUTHID CURRENT_USER. The AUTHID

property is an annoying detail but it’s something we always have to consider. The choice

impacts the security and the simplicity of our PL/SQL code.

The default option is definer’s rights. Sometimes the schema owner, the definer,

has more privileges and we want to lend those privileges to another user. Sometimes

the current user, the invoker, has more privileges or we want to run the SQL against the

invoker’s schema.

You may have noticed that the example function TEST_FUNCTION was created with

AUTHID CURRENT_USER. I can’t be 100% certain if that setting is correct for you. The

right setting depends on exactly how your user is authorized to create tables. Privileges

granted through roles are not used in definer’s rights procedures. If your account has

access to the CREATE TABLE privilege through a role like DBA, then AUTHID CURRENT_

USER is necessary to enable the role. If your account was directly granted the CREATE

TABLE privilege, then either setting will work. Most accounts are granted access through

roles, which is why I chose AUTHID CURRENT_USER in the previous function.

Regardless of which option is used, PL/SQL objects are compiled without using any

roles. For a procedure to compile successfully, all schema objects used in the procedure

must either be owned by the same schema, directly granted to the schema owner, or

used in dynamic SQL. (However, anonymous blocks are run with the invoker’s roles,

which is why code often works as an anonymous block but not as a stored procedure.)

Chapter 21 LeveL Up YoUr SkiLLS with pL/SQL

569

The AUTHID option is extremely confusing but we cannot ignore it. Oracle privileges

are complex and it will take a while before this option makes sense.

 Triggers
Triggers contain PL/SQL code and are executed when specific things happen and

specific conditions are met. Common uses of triggers are logging and auditing, enforcing

multi-table constraints, enabling DML on views, and changing session settings during

logon.

Triggers are powerful but they should not be our first choice for solving problems.

We should not use triggers when a simple constraint or column default would work just

as well. Triggers are side effects of other changes and can easily surprise developers

and administrators who aren’t expecting side effects. Triggers that work row by row

can decrease performance, especially when they can prevent direct-path writes. Some

organizations have a no-triggers policy; I wouldn’t go that far but I would recommend

we be careful when we create triggers.

The trigger syntax is complicated and there’s not enough space to cover everything

here. The main parts of triggers are the event clauses (that specify what types of

statements fire the triggers), timing points (that specify precisely when triggers fire), WHEN

conditions (that optionally constrain when triggers fire), and the PL/SQL body which

can often reference the OLD and the NEW values. There are four types of triggers: simple,

instead-of, compound, and system.

Event clauses can be a combination of the DML events DELETE, INSERT, or UPDATE.

For system triggers the events can be almost any DDL event, such as CREATE or TRUNCATE.

System triggers can also include database or schema events, like AFTER STARTUP or

AFTER LOGON.

Timing points define precisely when the trigger fires. The self-explanatory options

are BEFORE STATEMENT, BEFORE EACH ROW, AFTER STATEMENT, AFTER EACH ROW, and

INSTEAD OF EACH ROW. Whether a trigger is BEFORE or AFTER, and whether it’s for a

STATEMENT or for EACH ROW, determines what information the trigger body can read or

change. For example, an AFTER STATEMENT trigger can view the final version of the table,

which is helpful for enforcing business rules. But an AFTER STATEMENT trigger is not fired

for each row and cannot access individual OLD and NEW values.

Chapter 21 LeveL Up YoUr SkiLLS with pL/SQL

570

The WHEN (condition) allows triggers to easily include or exclude rows from

processing. Any valid SQL condition can be used to filter the results, and the condition

may be able to reference the OLD and NEW values.

Simple DML triggers can respond to changes made through INSERT, UPDATE, DELETE,

or MERGE statements. For example, a trigger can be used to set columns such as CHANGED_

BY or CHANGED_DATE or could be used to save a copy of old data so that nothing is ever

truly deleted.

In many regulated environments data can never be fully deleted. In theory we could

use backups and tools like LogMiner to get the table history, but in practice it is much

more convenient to have audit tables. Oracle’s built-in auditing is only for security

and does not help us audit data changes. We will not find old copies of our tables in

DBA_AUDIT_TRAILS. If we want to keep historical records, we must build the tables and

triggers ourselves. There are several ways to create audit tables.

One popular choice for creating audit tables is to have a single audit table, with one

row for each changed column. That solution is similar to an EAV table; the table is easy

to build and easy to write into, but is slow, wastes space for dense changes, and is hard

to query. If our data is small and we don’t plan on querying the audit trail much, a single

table might work fine.

If we have a large amount of data, or we plan to regularly query old data, we should

build an audit table for every regular table. This solution is faster and easier to use, but

it’s more complex because we need to create and maintain extra tables, and it wastes

space for sparse changes (it’s expensive to store an entire row if only one column

changed). But in a highly regulated environment where we need to quickly prove exactly

what happened and when, those tables are a lifesaver.

The following code creates a row-level AFTER trigger. Notice the conditional

predicates in the trigger body that indicate what kind of DML was used. We need that

information to know whether to use the OLD or the NEW values, or both. A real trigger

would store the changes in an audit table but this sample trigger is only printing the

statement so we can see how it works.

--Create a trigger to track every row change.

create or replace trigger transaction_test_trg

after insert or update of a or delete on transaction_test

for each row

Chapter 21 LeveL Up YoUr SkiLLS with pL/SQL

571

begin

 case

 when inserting then

 dbms_output.put_line('inserting '||:new.a);

 when updating('a') then

 dbms_output.put_line('updating a from '||

 :old.a||' to '||:new.a);

 when deleting then

 dbms_output.put_line('deleting '||:old.a);

 end case;

end;

/

The following PL/SQL block shows what happens when we INSERT, UPDATE, and

DELETE. (The results assume the table is empty at the beginning of the example.)

--Test the trigger.

begin

 insert into transaction_test values(1);

 update transaction_test set a = 2;

 delete from transaction_test;

end;

/

inserting 1

updating a from 1 to 2

deleting 2

If we need to audit a large number of tables, it may be worth creating a package to

automate the building of audit triggers. As discussed in previous chapters about dynamic

SQL, we can use the data dictionary and helpful programming styles to easily generate

trigger code.

Another popular use of simple DML triggers is to verify multi-table constraints. The

problem with validating multi-table constraints through triggers is the performance;

even if we only change one row, we may need to query the entire table. We should at

least use an AFTER STATEMENT trigger, so we don’t have to verify the conditions for every

row. This approach can accomplish the same thing as the materialized view multi-table

constraints discussed in Chapter 9.

Chapter 21 LeveL Up YoUr SkiLLS with pL/SQL

572

Instead-of DML triggers can be used to change the way we interact with views. If

our views are very simple, they may be inherently updatable and we can natively run

DML against the views. But non-trivial views are not updatable and it may not be clear

to Oracle how a change to a view should be reflected as a change to a table. With an

instead- of DML trigger, we can define the rules for how to handle changes to views.

Some applications may use tables only as low-level physical storage and only allow users

to interact with views that create a high-level abstraction of the system.

Compound DML triggers can combine different timing points into a single trigger.

Combining timing points lets us initialize variables in the BEFORE STATEMENT section,

gather data in a FOR EACH ROW section, and then process the results in bulk in the

AFTER STATEMENT section. Combining the trigger operations can significantly improve

performance and can be helpful if we’re auditing tables that often undergo large

changes.

Compound triggers can also help us avoid the dreaded mutating table error,

ORA- 04091. Mutating table errors happen when our trigger tries to modify the rows

of the same table that fired the trigger. Row-level triggers firing triggers would lead to

nondeterministic behavior that would depend on the order the rows were processed.

One way to avoid that problem is to gather the relevant data in a FOR EACH ROW section

and make the changes in an AFTER STATEMENT section, since the AFTER STATEMENT

section does not cause mutating table errors.

System triggers can fire for DDL statements per schema or per system or can fire

for database events. For example, we can create a system trigger to prevent specific

commands from running against specific objects. We must be extremely careful when we

create system triggers or we can prevent Oracle from working. If possible, we should use

schema triggers instead of a database trigger, and affect the smallest possible number of

users.

A popular use of system triggers is to create a logon trigger that sets session values,

for formatting or optimization. But remember that our server code should never depend

on the client format settings. If a procedure only runs with a specific NLS_DATE_FORMAT,

that procedure is broken and needs to be fixed.

Many developers use logon triggers to set the NLS_DATE_FORMAT to avoid implicit

conversion bugs. I prefer the exact opposite: I like set an intentionally silly NLS_DATE_

FORMAT. Setting a weird value, and then running the unit tests, will ensure the program

does not use any implicit date conversions. Notice that the following trigger is only set

Chapter 21 LeveL Up YoUr SkiLLS with pL/SQL

573

for my schema, not the whole system. And I’ve also hard-coded my schema name to

ensure this trigger is not accidentally applied in the wrong environment.

--Create logon trigger that sets a custom NLS_DATE_FORMAT.

create or replace trigger jheller.custom_nls_date_format_trg

after logon on jheller.schema

begin

 execute immediate

 q'[alter session set nls_date_format = 'J']';

end;

/

--Logout and logon again and run this to see the new format.

select to_char(sysdate) julian_day from dual;

JULIAN_DAY

 2458530

Oracle does not have on-commit triggers but we can imitate them with PL/SQL

packages like DBMS_ALERT and DBMS_JOB. The package DBMS_SCHEDULER is almost always

the best way to create jobs, but DBMS_JOB has one advantage: DBMS_JOB only really

submits the job when the transaction is committed. The following PL/SQL block shows

how to make something happen after the transaction is committed.

--Imitation on-commit trigger.

declare

 v_job number;

begin

 --Create a job, but it won't take effect yet.

 dbms_job.submit

 (

 job => v_job,

 what => 'insert into transaction_test values(1);'

);

 --A rollback would ignore the job.

 --rollback;

Chapter 21 LeveL Up YoUr SkiLLS with pL/SQL

574

 --Only a commit will truly create the job.

 commit;

end;

/

Jobs are run asynchronously and may not execute immediately. We may need to wait

a while before we see the results of the preceding PL/SQL block.

 Conditional Compilation
Conditional compilation lets us alter the source code of our PL/SQL programs

depending on the environment. Conditional compilation is more dynamic than regular

code but not as dynamic as dynamic SQL; we can’t change the source code at run

time with conditional compilation. When PL/SQL programs are compiled, conditional

compilation can read session settings and constants to determine which source code to

use. This feature is helpful when we want to use the latest and greatest SQL and PL/SQL

features but only when those features are available.

The following example shows how we can use different source code for different

versions of the database. The preprocessor control tokens use the constants in the

package DBMS_DB_VERSION to determine what code is compiled. The source code can be

complete gibberish as long as the code is not compiled.

--Conditional compilation example.

begin

 $if dbms_db_version.ver_le_9 $then

 This line is invalid but the block still works.

 $elsif dbms_db_version.ver_le_11 $then

 dbms_output.put_line('Version 11 or lower');

 $elsif dbms_db_version.ver_le_12 $then

 dbms_output.put_line('Version 12');

 $elsif dbms_db_version.ver_le_18 $then

 dbms_output.put_line('Version 18');

 $else

 dbms_output.put_line('Future version');

 $end

end;

/

Chapter 21 LeveL Up YoUr SkiLLS with pL/SQL

575

The preceding code is even trickier than it looks. The version checking must be

done in a precise order or the code will not work. For example, the constant DBMS_DB_

VERSION.VER_LE_18 does not exist in Oracle 12.2. The code would fail on 12.2 if the IF

condition was written in a different order.

 Other PL/SQL Features
We need to know what packages already exist so we don’t reinvent the wheel. Chapter 8

already mentioned several important PL/SQL packages and it’s worth quickly listing

them again: DBMS_METADATA, DBMS_METADATA_DIFF, DBMS_OUTPUT, DBMS_RANDOM, DBMS_

SCHEDULER, DBMS_SQL, DBMS_SQLTUNE, DBMS_STATS, and DBMS_UTILITY.

Other useful pre-built packages are UTL_MAIL (for sending email), DBMS_DATAPUMP

(for exporting and importing data), DBMS_LOB (for large object processing), DBMS_LOCK

(has a useful SLEEP function), and UTL_FILE (for reading and writing to the operating

system). There’s a large list of packages in the voluminous PL/SQL Packages and Types

Reference. Nobody has the time to read the entire manual but just skimming through the

table of contents is helpful.

Exception handling was already discussed but is also worth briefly revisiting.

Exceptions are automatically propagated up the call stack. If we do nothing, Oracle will

print lots of helpful information. If we use a logging utility, we must ensure the logs

contain all the necessary information for debugging.

There’s so much more to PL/SQL than what this chapter covers. Unlike other

database systems, Oracle’s procedural language extension is a full-blown programming

language. There is enough power in PL/SQL to do anything. But SQL should still be the

star of our database programs. We should save most of our clever tricks for SQL and use

PL/SQL to glue the SQL together.

 Start Teaching and Creating
You have everything you need to become an Oracle SQL guru. A good development

process lets you quickly build solutions and experiment with new ideas. Advanced

and arcane features give you the technical ability to solve any problems. Elegant

programming styles let you build beautiful and manageable code. Understanding Oracle

performance lets you build solutions that are lightning fast.

It’s time to start sharing your skills with others, if you’re not already. To truly master

Oracle SQL, we need to teach others and create open source projects.

Chapter 21 LeveL Up YoUr SkiLLS with pL/SQL

576

 Teach Others
The best way to master a skill is to teach it to others. We don’t have to be an expert

before we start teaching. There are always people less skilled than us that we can teach.

And there are always people more skilled than us that we can learn from. We want to

participate in environments where people of any skill level can contribute.

Teaching can start at your job. Teaching might just mean speaking up more at

meetings, volunteering to give small presentations, or training other developers. If you

feel nervous that you’re not good enough, or suffer from imposter syndrome, that might

just be a good sign that you’re getting out of your comfort zone and learning.

Eventually we’ll need to move beyond our job and start sharing our knowledge

with the public. To continue our professional growth, we need to join a community

where developers can collaborate, provide quick and meaningful feedback, and build a

reputation. Examples of places to teach others are forums, Q&A sites like Stack Overflow,

user groups, or one of the many social networks for developers.

Mastering a skill requires intentional practice. Just doing the bare minimum at work

isn’t enough to make us experts. We need the confidence to put ourselves out there but

we also need the humility to learn from our mistakes.

 Create Open Source Projects
One of the greatest achievements for a software developer is to create a successful,

publicly available program. Most Oracle SQL developers only work on internal

applications used by a single customer, but our career doesn’t have to be that way. There

are many opportunities for us to create public programs using Oracle SQL and PL/SQL.

Building good software is tough because we tend to think about generic software.

The simple ideas are taken; the world doesn’t need another flashlight app for our phone.

The good ideas are too tough; we don’t have the time or skills to build a better social

network. But don’t give up!

We need to be in a lucky situation where we have the opportunity to build something

unique but feasible. Those lucky situations won’t happen unless we are an expert in

something, and if you’ve read this far, you are on the path to becoming an expert in

Oracle SQL. Our first attempts will fail but we’ll learn a lot from those failures. Don’t get

discouraged, nobody builds successful programs on the first try.

Chapter 21 LeveL Up YoUr SkiLLS with pL/SQL

577

The best way to build public programs is usually as open source. There are many

existing communities and tools that support open source development. Many of the

technical details of project management are taken care of by open source hosting sites,

such as GitHub, GitLab, BitBucket, SourceForge, and many more. Open sourcing our

code invites others to participate and helps us build better software.

When you begin building public programs, watch out for the curse of knowledge.

I’ve seen so many repositories with great programs that were completely inaccessible

because there was no metadata. Every project must at least have a Readme file; a quick

description, a simple example, simple installation instructions, and license information

are absolutely necessary if we want people to use our projects. If we’re going to spend a

huge amount of time building something, we should at least spend a few hours making

the project presentable and easy to install.

When most people talk about open source, what they really mean is “cheap.” Real

open source isn’t about saving money, it’s about freedom, collaboration, and positive

sum interactions where everybody wins. Our side projects can be made open source,

and with effort we can convince our organizations to open source some of our internal

programs. At the very least, when we post snippets of code online, we should ensure the

code is properly licensed for others to use.

Oracle SQL doesn’t yet have a huge open source ecosystem. With the right

development environment, advanced features, beautiful styles, and performance tuning

skills, there are many tools we can create and many knowledge gaps we can fill. And

advanced programming skills will certainly help advance our careers.

There are endless opportunities for advanced Oracle developers. Put down this book

and go write a program.

Chapter 21 LeveL Up YoUr SkiLLS with pL/SQL

PART VI

Appendices

581
© Jon Heller 2019
J. Heller, Pro Oracle SQL Development, https://doi.org/10.1007/978-1-4842-4517-0_22

APPENDIX A

SQL Style Guide
Cheat Sheet
Follow these style tips to write clear, powerful SQL statements. This simple list

summarizes the programming style recommendations made throughout this book.

There are exceptions to every rule, but we should still know what the rules are and why

the rules exist.

 1. Use inline views: Build large SQL statements out of small,

independent pieces with simple relational interfaces.

 2. Use ANSI join syntax: Build SQL statements in an orderly fashion

by adding and joining one table at a time.

 3. Adhere to the relational model: Use dumb columns and dumb

tables to create smart schemas. Never store lists of values in a

column and never use the wrong data type.

 4. Choose good names: Avoid unnecessary abbreviations and

aliases – complexity is measured in words, not characters.

 5. Use comments and whitespace: Important constructs like inline

views deserve extra comments, lines, and indenting.

 6. Use left alignment, tabs, and lower case: Learn to quickly write

code that emphasizes important differences between inline views,

not trivial differences between keywords.

 7. Create large SQL statements: One large query is simpler and

faster than two small queries.

582

 8. Use dynamic SQL: Use SQL more often and keep the code

readable by combining dynamic SQL with multiline strings,

alternative quoting syntax, and templating.

 9. Maintain a single source of truth: The golden copy of our code

should exist in a version-controlled text file, not a database.

 10. Build MCVE test cases: Build minimal, complete, verifiable

examples to test ourselves and share our knowledge.

 11. Use SQL worksheets: Create an organized collection of

worksheets that contain powerful SQL statements. Use a format

that leverages IDE features.

 12. Learn and use advanced features: SQL is much more than

SELECT * FROM EMPLOYEES. Learn advanced SELECT, DML, and

DDL features to make our programs simpler and faster and to

solve any problem in SQL.

Appendix A SQL StyLe Guide CheAt Sheet

583
© Jon Heller 2019
J. Heller, Pro Oracle SQL Development, https://doi.org/10.1007/978-1-4842-4517-0_23

APPENDIX B

Computer Science Topics
You don’t need a computer science degree to apply the practical advice in this book

and become a better SQL developer. For database developers it can be useful to branch

out in different directions and learn about other languages, system architecture, project

management, etc. But a deeper understanding of database processing can also help

your career and create interesting opportunities. Use the following list to explore the

theoretical foundations of many of the topics in this book:

 1. Relational model and relational algebra: Normalization and

denormalization (OLTP and data warehouse), set theory (thinking

about SQL), and ACID (Oracle architecture)

 2. Programming language paradigms: Declarative (SQL, XQuery),

imperative (PL/SQL, MODEL), functional (SQL), object-oriented

(object-relational PL/SQL), visual (query builders), literate,

aspect-oriented (triggers), and metaprogramming (dynamic SQL,

data dictionary, conditional compilation)

 3. Algorithms: Searching (index traversal versus full table scan),

sorting (joins and order by clause), hashing (joins, cluster, and

partitioning), number of distinct values approximation (quickly

calculate and aggregate NDV statistics), and joining (hash, sort-

merge, nested loops)

 4. Run time analysis: Algorithm analysis worst cases – 1/N

(batching), 1 (good hash partitions/clusters/joins), LOG(N)

(B-tree index access), 1/((1-P)+P/N) (Amdahl’s law), N (full table

scan, bad hashing), N*LOG(N) (sorting, joining, iterating index

access, gathering statistics), N^2 (cross join, nested loops), N! (join

order), and ∞ (satisficing the halting problem for the optimizer)

584

 5. Data structures: B-tree (index), bitmap (index), hash table

(joining, grouping, distinct, cluster), bloom filter (hash join),

array (nested table, varray), record (PL/SQL record, type objects,

collections), object (type objects), and key value and graph

(NoSQL databases)

 6. Automata theory: Formal languages (is SQL a programming

language, elementary cellular automata, regular expression

limitations), lexing and parsing (advanced dynamic SQL language

problems), Backus–Naur form (syntax diagrams), and compiler

construction (optimizer transformations, hints, pragmas)

 7. Discrete math: Boolean logic (conditions), De Morgan’s law

(compound conditions), combinatorics (join order), and Venn

diagrams (joins)

 8. Information theory: Randomness (SAMPLE, DBMS_RANDOM),

compression (table and index compression), and cryptography

(Oracle’s weak password hashes)

 9. Operating systems theory: Processes (parallelism), resource

allocation (deadlocks, MVCC row-level locking), and I/O

(memory and caching)

Appendix B Computer SCienCe topiCS

585
© Jon Heller 2019
J. Heller, Pro Oracle SQL Development, https://doi.org/10.1007/978-1-4842-4517-0

Index

A
Abbreviations, 332, 333
Abjads, 333
Active session history (ASH) data, 465

drawback, 466
relational interface, 466

Adaptive cursor sharing, 442
Adaptive query plans, 444, 445, 447
ADD FUNCTION command, 220
Advanced grouping, 146

CUBE, 148
GROUPING sets, 148
ROLLUP syntax, 146, 147

Aggregate functions, 149, 150
Agile environment, 64
Algorithm analysis, 382, 383, 385
Aliases, 329, 330
ALTER commands, 41, 219–221
ALTER PACKAGE command, 220
ALTER TABLE command, 220
Amdahl’s law, 1/((1-P)+P/N), 395–397
Analytic function row limiting, 161, 162
Analytic function syntax, 150, 151
ANSI joins, 19, 122–123
Anti-patterns, avoid

automation, 372, 373
cargo cult syntax, 373
CURSOR, 368, 370
definition, 355
deprecated features, 374

generic errors, 375–377
Java in database, 364, 365
object relational database, 362, 363
parameters, 377
second system syndrome, 355, 356
soft coding, 361, 362
SQL parsing, 370, 371
TO_DATE, 365, 367
undocumented features, 373, 374

APPEND hint, 200, 201
Application Express (APEX), 515, 516
Arcane features

advanced compression, 521
ANYDATA object, 513, 514
ANYDATASET object, 513, 515
ANYTYPE object, 513, 514
APEX, 515, 516
cellular automata, 511
database in-memory, 521
data mining, 519
MODEL clause, 508–511
OLAP, 519, 520
Oracle text indexes, 517, 518
Oracle vs. the Unix philosophy, 507, 508
PGQL, 520
row pattern matching, 512, 513
spatial, 519
VPD, 520

Assert functionality, 9
ASSOCIATE STATISTICS command, 501

https://doi.org/10.1007/978-1-4842-4517-0

586

Associative arrays collections, 557
Asymptotic analysis, 382
Atomicity, 18
Automata theory, 584
Automated testing

biases, 53
bugs fixing, 51, 52
gain confidence, 52
pre-built package, 57
single test suite, 57
test data

dropping and recreating, 56
performance testing, 55, 56
production data, 53, 54

test packages, 58, 59
unit testing framework, 56
utPLSQL, 57

Automatic Database Diagnostic Monitor
(ADDM), 466, 467

Automatic reoptimization, 443
Automatic storage management

(ASM), 35, 280
Automatic workload repository

(AWR), 463
PL/SQL block, 463
report generation, 464, 465

B
Bad hints, 495–497
Batching commands, 454, 455
BFILEs, 273
Bitmap indexes, 240, 241
Breadth-first approach, 413
Buffer cache, 285
Bugs

bad code, 305
exception handling, 303, 305

failing fast, 303
fragile SQL

correlated subqueries, 306
outer joins, 307
PL/SQL queries, 306

weird value, 305
BULK COLLECT INTO cursor, 554

C
Caches

in-memory option, 286
session memory, 286
shared pool, 286

Cardinality
differences of, 435
meaning of, 433
statistics, 432

Cargo cult programming, 373
Cartesian products, 13, 403
CASE expression, 131, 132
CAST functions, 562
Chunking, 116, 117
Client result cache, 286
Code formatters, 336, 337
COLLECT functions, 562
COMMIT command, 207–209
Common table expressions

example, 170–172
performance, 173, 174

Comparison tools, 91, 92
CONCAT, 128
Concatenate values, 128
CONNECT BY syntax, 174
Constraint

ALTER TABLE, 232–233
ASSERT command, 236
exceptions, 233, 234

INDEX

587

NOVALIDATE option, 234–236
parallel, 234–236
performance, 232
types, 231
WITH CHECK OPTION, 236
WITH READ ONLY, 236

Context
common table expressions, 114
correlated subqueries, 113
definition, 112

Cost-based optimizer, 436
CREATE SCHEMA syntax, 456
Cross joins, 27

D
Database administrators (DBAs), 30
Database links, 257, 258
Database tuning

ADDM, 466, (see also Automatic
Database Diagnostic Monitor
(ADDM))

advisors, 468, 469
approaches, 414, 415
ASH, 465, (see also Active Session

History (ASH) data)
AWR, 463, (see also Automatic

Workload Repository (AWR))
database performance, 460–463
metrics, 462
sampling, 463
statistics, 462

Database types
ASM, 288
edition, 287
platform, 287
version, 287

Data definition language (DDL), 45, 204, 207

Data dictionary tables, 273
Data dictionary views, 67–69, 262
Data manipulation language (DML), 191

ALTER SESSION command, 211, 212
ALTER SYSTEM command, 209–211
database links, 213
DBMS_XSLPROCESSOR, 214
DELETE statement, 194–196
error logging, 201–203
export data pump (expdp), 213
external tables, 214
hints, 199–201
import data pump (impdp), 213
INSERT ALL statement, 192
INSTEAD OF triggers, 199
MERGE statement, 196–198
original export (exp), 213
original import (imp), 213
PL/SQL packages, 214–217
returning clause, 203, 204
SQL*Loader, 214
SQL*Plus COPY, 213
SQL*Plus scripts, 214
transaction control

commands, 207–209
transportable tablespaces, 213
TRUNCATE command, 196, 204–206
updatable views, 198, 199
UPDATE statement, 193, 194
UTL_FILE, 213
WHEN-THEN-ELSE logic, 192

Data structures, 584
Data warehouse (DW), 19, 458, 459

operations, 397
processing, 64

DBMS_DATAPUMP package, 575
DBMS_HPROF, 453, 454
DBMS_PROFILER, 451, 452

Index

588

DBMS_SQL, 528, 529
DBMS_WORKLOAD_REPOSITORY.

CREATE_SNAPSHOT function, 464
DBMS_XMLGEN, 179
DBMS_XMLGEN.GETXML, 529–531
DBMS_XPLAN.DISPLAY functions, 477
DBMS_XPLAN FORMAT Parameter,

478, 479
Deadlocks, 375
Declarative programming

declarative quirks, 416, 417
execution plans, 417, 418

DECODE syntax, 132, 133
Definer’s rights versus invoker’s

rights, 568
Deployment problems, 36, 37
Depth-first approach, 413
Discrete math, 584
DISTINCT operator, 12
Distributed database, 18
DML triggers, 571
DUMP function, 273
Durability, 18
Dynamic performance views, 69–71
Dynamic sampling, 502
Dynamic SQL

bind variables, 345–347
code generation, 351, 352
definition, 339
features, 344, 345
privileges, 342
rule engines, 343
running DDL commands, 340
string concatenation

multiline strings, 347
quotation mechanism, 348–350
templating system, 350, 351

Dynamic statistics, 443

E
Empowering everyone

barriers, 49
communication, 48, 49
power imbalance, 47
transparency, 49

Entity–attribute–value (EAV)
creation, 358, 359
definition, 357
vs. non-EAV tables, 358
subtle conversion

bugs, 359–361
Entity–relationship (ER) diagram, 11
Epistemology, 77
Equijoin vs. non-equijoin, 136
EXPLAIN PLAN command, 475
Explain plans, 417
Extended statistics, 502, 503
Extensible Markup Language

(XML), 177
eXtensible stylesheet language

transformations (XSLT), 181
External tables, 224
Extract–load–transform (ELT)

tools, 212
Extract, transform, and load

(ETL), 19, 212

F
FILTER operation, 430, 431, 442
Foreign key, 7, 231
FOR loop cursor, 553
Forums, 78
FROM clause, 19
Full outer join, 26, 27
Functional programming, 118
Function-based indexes, 241

INDEX

589

G
Generic conversion function, 534
GET_ORBIT_PERIOD function, 561
Global objects, 260, 261
Global temporary tables, 222, 223
GoldenGate, 268
Good hints, 495, 496
GRANT and REVOKE

commands, 261, 262
Granules, 247
Graphical user interface (GUI), 75
GROUP BY/UNIQUE operations, 425

H
Hash clusters, 391
Hash joins, 392
HASHKEYS clause, 391
Hash partitioning, 390
HASH/SORT operations, 425
Heap tables, 221

I
Index compression, 241
Indexes

access comparisons, 239
binary search

algorithm, 237–239
clustering factor, 239
features, 240–242
heap table, 238
pointers, 238
rebuilding, 242, 243

Index fast full, 240
Index full, 240
Index joins, 240
Index maintenance algorithms, 8

Index operations, 424, 425
Index-organized tables (IOT), 224
Index range scan, 240
Index skip scan, 240
Index unique, 240
Informal test cases

interactive querying, 63
minimal code, 60, 61
runnable and

self-contained, 61, 62
sharing tests, 64
XY problem avoiding, 65

Information theory, 584
Inline views, 119–123
Inner join, 24, 25
Installation and patch

scripts, 455–457
Integrated development

environment (IDE), 16, 96–99
Interested Transaction

List (ITL), 276
Isolation, 18

J, K
JavaScript Object Notation (JSON), 182
Join diagrams, 22, 24
Join syntax

ANSI syntax code, 108
cross joins, 110, 111
debugging, 109, 110
outer joins, 111, 112
problems, 108
syntax code, 107

Join visualization, 22, 24
JSON database

building and storing, 182, 184
query, 184, 185

Index

590

L
Large objects (LOBs), 230
Large SQL statements

benefits
context switches, 318
improves clarity, 316
optimizer opportunities, 316, 317
parallelism, 319, 320
reduces input/output, 318

imperative programming size
limits, 309, 310

inline views, 322, 324
debugging, 323, 324

inside out, 321, 322
performance risk, 312, (see also

Performance risks of large SQL
statements)

Lateral, cross apply/outer
apply joins, 136

LAUNCH_DATE format, 179
Left/right outer joins, 25, 26
LISTAGG aggregates, 148, 149
LOAD AS SELECT operation, 429
LogMiner, 268, 570
Lowercase code, 337, 338

M
Materialized view, 254–257
Materialized zone map, 260
Measure code

complexity, 328, 329
Method4 dynamic SQL, 532, 533
Method5 dynamic SQL, 534, 535
Microsoft Excel, 92
Multiline strings, 347
Multiple columns, 241
Multitenant architecture, 288

Multiversion concurrency control
(MVCC), 5

My Oracle Support, 83, 84

N
Names, choosing

case-sensitive names, 300
length and changes, 300
quoted identifiers, 299
styles, 298, 299

National language
support (NLS), 127

character set, 186, 187
displaying data, 189, 190
length semantics, 187
text comparisons/sorting, 188, 189

Natural joins, 139, 140
NESTED LOOPS operation, 446
NESTED LOOPS SEMI function, 483
Nested tables collections, 556
Nesting regular views, 249, 250
NLS_DATE_FORMAT, 190
Non-atomic types, 273
Null, 20–22

O
O(∞)–optimizer, 409, 410
O(1)–hashing, 388

hash clusters, 391
hash functions, 388
hash joins, 392
hash partitioning, 390
working, 388, 389

O(1/N)–batching
batch size, 387
harmonic progression time, 388

INDEX

591

overhead, 386–388
tasks, 387

Object relational mapping (ORM) tools, 457
Object-relational tables, 223
OLAP objects, 260
O(LOG(N))

binary tree search, 393
index access, 393, 394
vs. O(N), 394

OLTP applications, 457, 458
O(N!), join order, 409
O(N), full table scans, 397
O(N^2)

cross joins, 408
FOR loops, 408
MODEL clause, 408

One large SQL statement vs. multiple
small statements, 310–312

Online analytical processing
(OLAP), 17, 519, 520

Online transaction processing (OLTP), 18
vs. data warehouse (DW), 19

O(N*LOG(N))
full table scan vs. index, 399
gathering optimizer statistics, 404–407
global vs. local indexes, 404
joining, 401

hash join, 403
nested loop with full table scans, 402
nested loop with index access, 403
sort-merge join with full table

scans, 403
sorting, 398, 400, 401

Open source projects, 576, 577
Operating systems theory, 584
Optimizer statistics, 426

example of, 438–440
types of, 436, 437

Oracle (+) operator, 26
Oracle B-tree indexes, 393
Oracle detective kit

data dictionary views, 67, 68
dynamic performance

views, 69–71
non-relational tools, 74, 75
relational tools, 72–74

Oracle documentation, 79–81
Oracle Enterprise Manager, activity

report, 461
Oracle performance testing, 65, 66
Oracle’s memory architecture

OLTP system, 284
PGA, 284
server architecture, 283
SGA, 284

Oracle SQL, 93
database administrators, 85
developers, 576
numeric literals syntax, 82–83
problems, 84
SELECT features, 127

Oracle SQL development
organizing, 99
technology stack, 87, 88
worksheets, 100, 102, 103

Oracle users, 250–252
ORA_HASH function, 390
ORDER BY clause, 140–142
OR-expansion, 441
OXIDIZER_OR_FUEL column, 172

P
PARALLEL hint, 200, 201
Parallelism, 319, 320
Parallel operations, 426, 427, 429

Index

592

Parsing
ANTLR, 526, 527
data dictionary views, 523, 524
PL/Scope, 524, 525
PLSQL_LEXER, 525, 526

Partitioned outer joins, 134, 135
Partition extension clause, 169, 170
Partitioning

features, 246–248
fundamental mechanism, 243
goal, 244
launch category, 244, 245
tables and indexes, 243

Partition operation, 429, 430
PCTFREE parameter, 275
Performance risks of large SQL statements

optimizer risk, 313
inline views, 314
ROWNUM, 315

parse time
compilation errors, 313
Oracle database server, 312
table expressions, 313

resource consumption, 315, 316
Performance tuning, 413
PGA_AGGREGATE_LIMIT parameter, 282
PGA_AGGREGATE_TARGET parameter, 282
Pivot syntax

aggregate function, 164, 165
old, 163, 164
vs. unpivot, 162, 163

PL/SQL, 93
common table expressions, 172, 173, 531
developer, 75
function result cache, 286
objects, 259
programs

logging, 450, 451

PL/SQL integration features
autonomous transactions, 565–567
collections, 556, 557, 559
conditional compilation, 574, 575
cursors, 551, 552, 554
functions, 559, 561
packaging code, 540
pipelined functions, 563–565
records, 554, 556
session data, 540–542
table functions, 561–563
transactions, 543, (see also

Transactions)
variables

Booleans, 549
TYPE attribute, 549
VARCHAR2 types, 550

Polymorphic table functions, 533, 534
PRAGMA AUTONOMOUS_

TRANSACTION, 565
Precedence rules, 129, 130
Precise XML schema, 229
Predicate pushing, 441
Prefixes and suffixes, 330–332
Primary key, 231
Private database

advantages, 31–34
installation, 34, 35

Private temporary tables, 223
Program comments

ASCII art, 297, 298
COMMENT objects, 296
limitations, 297
multiline, 296, 297
single-line, 296
styles, 295, 296

Program global area (PGA), 142, 284
Programming language paradigms, 583

INDEX

593

Projection, 12
Property graph query language (PGQL), 520

Q
Query by Example (QBE), 14
Query plans, 417

R
RANK analytic function, 151–153
Read committed mode, 547
Real application clusters (RAC), 33, 287
Recursive common table

expression, 176, 177
Recursive SQL statement, 419
Redo, 265

ARCHIVELOG mode, 268
SQL commands, 267
SQL performance, 266
TRUNCATE commands, 267

REGEXP_SUBSTR function, 157
Regular expression

examples, 155, 157, 158
limitations, 158, 159
syntax, 154, 155

Relational database, 3
architectural/conceptual changes, 5
categories, 17
features, 4

Relational model
abstractions, 9
Codd’s paper, 7
denormalization, 11, 12
history, 6
logical column order, 11
normalization, 7
NULL three-valued logic, 9, 10

redundant data, 9
and relational algebra, 583
sets/tables, 8
terminology, 7

REMOTE operations, 432
Reporting tools, 92
Reproducible test case, 59, 60
Restriction or selection limits, 12
ROLLBACK command, 207–209
Row chaining, 274
Row limiting clause, 159, 160
ROWNUM technique, 159–161
Run time analysis, 583

S
SAVEPOINT command, 207–209
Scalar subquery caching, 286
Schema objects, 260
Searching algorithms, 583
SELECT INTO cursor, 551
Self-joins, 138
Semi-join/anti-join, 136, 137
SEQUENCE operation, 431
Sequences, 252, 253
Set operators, 425, 426
Sets, 115, 116
SET TRANSACTION command, 548
Sharded tables, 223
Sharding, 288
Shared database vs. private

database, 29, 30
Simplifying joins, 130, 131
Single instruction multiple

data (SIMD), 319
SQL alternatives, 13–15
SQL plan directives, 443
SQL*Plus, 94–96

Index

594

SQL*Plus installation scripts, 38
checking prerequisites, 39
comments, 38
drop commands, 39
grant to roles, 40
messages, 39
object type, 40
schemas, validation, 40
settings, 39

SQL*Plus patch scripts, 40, 41
SQL result cache, 286
SQL set operators, 142, 143

comparisons, 145
INTERSECT and MINUS, 144, 145
UNION and UNION ALL, 143, 144

SQL statements
chunking, 116, 117
example code, 123–125
functional programming, 118
sets, 115, 116

SQL style guide cheat
sheet, 581, 582

SQL tuning
actual operation statistics

checklist, 491, 492
Degree of Parallelism, 489–491
GATHER_PLAN_STATISTICS,

481–485
Real-Time SQL Monitor Reports

(Active), 488, 489
Real-Time SQL Monitor Reports

(Text), 485–488
bad query execution plan, 497, 498
changing execution plans, 493–495
finding execution plans

AUTOTRACE feature, 480
graphical execution, 473, 475–477
Note section, 479, 480

finding slow SQL statements
DB time, 470, 471
organized collection, 470
past SQL, 473
running SQL, 471–473

first operation, 421
join operation, 421, 422
operations, 419
optimizer statistics

automatic, 501
manual, 499, 500

recursive SQL and execution plans,
419, 420

SQL profile, 498, 499
statements, 420
transformations, 440

SQL writing skills, 307
Static websites, 79
Storage of large objects (LOBs), 273
Storage structures

block, 275
data files, 278, 279
extent, 277
hierarchy, 272
row-level locking architecture, 276
row pieces, 274, 275
segments, 277
tablespaces, 279
wasted space, 281

Subquery unnesting, 441
SUBSTR vs. REGEXP_SUBSTR

function, 434
Synonyms, 254
SYSAUX tablespaces, 280
SYS_CONTEXT function, 542
System Change Number (SCN), 261, 270
System Global Area (SGA), 284
SYSTEM tablespaces, 280

INDEX

595

T
Table

ALTER TABLE command, 229
backward compatible, 230
basic table compression, 226
column defaults, 231
column definitions, 230
deferred segment

creation, 227, 228
DROP TABLE command, 229
flashback archiving, 228
identity columns, 231
LOBs, 230
logging clause, 225
parallel clause, 227
physical attribute clause, 228
preceding compression, 226
types, 221–224
virtual columns, 230

Table access operations, 423, 424
Table references

flashback, 168
sample query, 169

Tabs for left alignment, 333–336
Temporary tablespace, 318

resumable sessions, 282
trial and error, 282

Test-driven development, 53
Text editors, 90, 91
Time model statistics, 460
TortoiseGit/TortoiseSVN, 44
Transactions

COMMIT, 543, 545
DML statements, 543
EXCEPTION blocks, 544
implicit cursor

attributes, 545, 546

isolation and
consistency, 547, 549

ROLLBACK command, 543, 544
row-level locking, 546, 547
SAVEPOINT, 543

Triggers, PL/SQL
compound DML

triggers, 572
event clauses, 569
instead-of DML triggers, 572
on-commit triggers, 573
simple DML triggers, 570
systems triggers, 572
timing points, 569
WHEN (condition), 570

Troubleshooting techniques, 62
TRUNC function, 129
Typing, 89

U
Undo for multiversion consistency

ACID, 270
SATELLITE table, 271
SCN, 270, 271
UNDO_RETENTION parameter, 272

Undo for rollback
INSERT statements, 269
undo–redo combination, 268
UNDO_RETENTION parameter, 270

UNION ALL commands, 456
Unique key, 231
UNISTR function, 186, 187
Unit testing framework, 56
Unpivoting syntax, 165–167
Uppercase keywords, 338
USING syntax, 140
UTL_MAIL package, 575

Index

596

V
Varrays collections, 559
Venn diagrams, 22, 24
Version control comments, 296
Version-controlled text files

automation, 45
create/save changes, 44–46
loading objects, 43, 44
single source of truth, 42

VIEW operation, 432
View merging, 317, 441
VIEW PUSHED PREDICATE operation, 432
Views

creation, 248, 249
expansion, 249, 250

Virtual Private Database (VPD), 520

W
Wait events, 460
Whitespace

inline views, 302
PL/SQL, 301
queries, 302

X, Y, Z
XMLISVALID function, 181
XMLTABLE, 180, 181
XMLTRANSFORM function, 181
XMLType, 178

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Part I: Learn How to Learn
	Chapter 1: Understand Relational Databases
	History of Relational Databases
	Relational Model and Why It Matters
	History
	Terminology
	Simplicity
	Sets and Tables
	Problems Implementing a Relational Model

	Relational Model and Why It Doesn’t Matter
	The NULL Problem Isn’t a Problem
	Column Order Matters
	Denormalization
	All Rows Are Distinct

	SQL Programming Language
	History and Terminology
	SQL Alternatives
	Is SQL a Programming Language?

	Different Database Types
	Alternative Database Models
	Different Oracle Databases (OLTP vs. DW)

	Key Concepts
	NULL
	JOIN
	Join Visualization
	Inner Join
	Left and Right Outer Joins
	Full Outer Join
	Cross Join

	Summary

	Chapter 2: Create an Efficient Database Development Process
	Shared Database vs. Private Database
	Create an Infinite Number of Databases
	Advantages of Private Databases
	How to Implement Private Databases

	Rapidly Drop and Recreate Schemas
	Why Deploy Often?
	How to Deploy Often?
	SQL*Plus Installation Scripts
	Comments
	SQL*Plus Settings and Messages
	Check Prerequisites
	Drop Old Schemas
	Scripts for Object Types
	Grant to Roles
	Validate the Schemas

	SQL*Plus Patch Scripts

	Control and Integrate Schemas with Version-Controlled Text Files
	Single Source of Truth
	Load Objects from the Repository and File System
	Create and Save Changes Manually

	Empower Everyone
	Power Imbalance Between Developers and Administrators
	Improve Communication
	Transparency
	Lower Barriers to Entry

	Summary

	Chapter 3: Increase Confidence and Knowledge with Testing
	Build Confidence with Automated Tests
	Fix Bugs Faster
	Gain Confidence, Avoid Biases
	Test-Driven Development
	Create Useful Test Data
	Create Large Test Data
	Remove Test Data
	How to Build Automated Tests

	Build Knowledge with Minimal, Complete, and Verifiable Examples
	Why Spend So Much Time Building Reproducible Test Cases?
	Minimal
	Complete
	Verifiable
	Sharing Tests
	Avoiding the XY Problem
	Oracle Performance Testing

	Oracle Detective Kit
	Data Dictionary Views
	Dynamic Performance Views
	Relational Tools for Inspecting Databases
	Non-relational Tools for Inspecting Databases

	Summary

	Chapter 4: Find Reliable Sources
	Places to Go
	The Problems with Forums
	The Problems with Static Websites
	Read the Manual
	The Manual Is Not Perfect
	My Oracle Support

	People to See
	Summary

	Chapter 5: Master the Entire Stack
	Not Just Faster
	Typing
	Operating Systems and Supporting Programs
	Operating Systems
	Text Editors
	Comparison Tools
	Reporting Tools and Excel

	SQL and PL/SQL
	SQL*Plus
	When We Should Use SQL*Plus
	When We Should Not Use SQL*Plus

	Integrated Development Environment
	Learn an IDE
	When Not to Use an IDE Feature
	Oracle IDE Comparison

	Worksheets, Notebooks, Snippets, Scripts, and Gists
	Get Organized
	Worksheets

	Summary

	Part II: Write Powerful SQL with Sets and Advanced Features
	Chapter 6: Build Sets with Inline Views and ANSI Join Syntax
	Spaghetti Code from Nonstandard Syntax
	Hard to Read Old Syntax
	Hard to Debug Old Syntax
	Accidental Cross Joins in Old Syntax
	Nonstandard but Still Useful

	Too Much Context
	The Importance of Limiting Context
	Avoid Correlated Subqueries
	Avoid Common Table Expressions

	Sets, Chunking, and Functional Programming to the Rescue
	Sets
	Chunking
	Functional Programming

	Inline Views
	What Is an Inline View?
	Inline Views Make Code Bigger but Simpler
	Simple Inline Views for a Large Example

	ANSI Joins
	Example
	Summary

	Chapter 7: Query the Database with Advanced SELECT Features
	Operators, Functions, Expressions, and Conditions
	Semantics
	How to Know When We’re Missing Something
	Precedence Rules
	Simplify

	CASE and DECODE
	Joins
	Partitioned Outer Joins
	Lateral, Cross Apply, and Outer Apply
	Equijoin or Non-equijoin
	Semi-join or Anti-join
	Self-joins
	Natural Joins and USING Considered Harmful

	Sorting
	Sorting Syntax
	Sorting Performance, Resources, and Implicit Sorting

	Set Operators
	UNION and UNION ALL
	INTERSECT and MINUS
	Set Operator Complications

	Advanced Grouping
	ROLLUP, GROUP*, CUBE
	LISTAGG
	Advanced Aggregate Functions

	Analytic Functions
	Analytic Function Syntax
	Analytic Function Examples

	Regular Expressions
	Regular Expression Syntax
	Regular Expression Examples
	Regular Expression Limitations

	Row Limiting
	Row Limiting Clause
	ROWNUM
	Analytic Function Row Limiting

	Pivoting and Unpivoting
	Old Pivot Syntax
	New Pivot Syntax
	UNPIVOT

	Table References
	Flashback
	Sample
	Partition Extension Clause

	Common Table Expressions
	Example
	PL/SQL Common Table Expressions
	Performance and Over-use

	Recursive Queries
	CONNECT BY Syntax
	Recursive Common Table Expressions

	XML
	XMLType
	DBMS_XMLGEN and Creating XML
	XMLTABLE
	XML Programming Languages

	JSON
	Build and Store JSON in the Database
	Querying JSON

	National Language Support
	Character Sets
	Length Semantics
	NLS Comparing and Sorting
	Display Formats

	Summary

	Chapter 8: Modify Data with Advanced DML
	INSERT
	UPDATE
	DELETE
	MERGE
	Updatable Views
	DML Hints
	Error Logging
	Returning
	TRUNCATE
	COMMIT, ROLLBACK, and SAVEPOINT
	ALTER SYSTEM
	ALTER SESSION
	Input and Output
	Useful PL/SQL Packages
	Summary

	Chapter 9: Improve the Database with Advanced Oracle Schema Objects
	ALTER
	Tables
	Table Types
	Table Properties
	ALTER and DROP Table
	Column Types and Properties

	Constraints
	Constraint Performance Impact
	Altering Constraints
	Constraint Exceptions
	NOVALIDATE and Parallel Constraints
	Other Constraints

	Indexes
	Index Concepts
	Index Features
	Rebuilding Indexes

	Partitioning
	Partitioning Concepts
	Partitioning Features

	Views
	Creating Views
	Expanding Views

	Users
	Sequences
	Synonyms
	Materialized Views
	Materialized Views for Multi-table Constraints

	Database Links
	PL/SQL Objects
	Other Schema Objects
	Global Objects
	GRANT and REVOKE
	Summary

	Chapter 10: Optimize the Database with Oracle Architecture
	Redo
	Redo in Theory
	Redo in Practice

	Undo and Multiversion Read Consistency
	Undo for Rollback
	Undo for Multiversion Consistency

	Storage Structures
	Column Values
	Row Pieces
	Blocks and Row-Level Locking
	Extents
	Segments
	Data Files
	Tablespaces
	Automatic Storage Management
	Wasted Space

	Temporary Tablespace
	Memory
	Caches
	Database Types
	Summary

	Part III: Write Elegant SQL with Patterns and Styles
	Chapter 11: Stop Coding and Start Writing
	The Hypocrisy of Examples
	Comments
	Comment Styles
	Comment Mechanics
	Comment ASCII Art

	Choose Good Names
	Name Styles
	Avoid Quoted Identifiers
	Name Length and Changes

	Whitespace
	Make Bugs Obvious
	Fail Fast
	Avoid Pokémon Exception Handling
	Use Bad Names and Weird Values
	Use Fragile SQL

	The Path to Writing Good SQL
	Summary

	Chapter 12: Write Large SQL Statements
	Imperative Programming Size Limits Do Not Apply
	One Large SQL Statement vs. Multiple Small SQL Statements
	Performance Risks of Large SQL Statements
	Large SQL Parsing Problems
	Large SQL Increases Optimizer Risks
	Large SQL Resource Consumption Problems

	Performance Benefits of Large SQL Statements
	Large SQL Improves Clarity
	Large SQL Increases Optimizer Opportunities
	Large SQL Reduces Input/Output
	Large SQL Reduces Context Switches
	Large SQL Improves Parallelism

	Reading and Debugging Large SQL Statements
	Inside Out
	Navigating Inline Views

	Summary

	Chapter 13: Write Beautiful SQL Statements
	How to Measure Code Complexity
	Avoid Unnecessary Aliases
	Prefixes and Suffixes
	Object and Variable Names
	Referencing Tables and Columns

	Avoid Abbreviations
	Use Tabs for Left Alignment
	Avoid Code Formatters
	Lower Case
	Summary

	Chapter 14: Use SQL More Often with Basic Dynamic SQL
	When to Use Dynamic SQL
	Running DDL
	Unknown Until Run Time
	Simplify Privileges
	Rule Engines
	When Not to Use Dynamic SQL

	Basic Features
	Bind Variables for Performance and Security
	How to Simplify String Concatenation
	Multiline Strings
	Alternative Quoting Mechanism
	Templating

	Code Generation, Not Generic Code
	Summary

	Chapter 15: Avoid Anti-Patterns
	Avoid Second System Syndrome and Rewriting from Scratch
	Avoid Stringly Typed Entity–Attribute–Value Model
	EAV Pros and Cons
	Never Use the Wrong Type
	Subtle Conversion Bugs in Oracle SQL

	Avoid Soft Coding
	Avoid Object-Relational Tables
	Avoid Java in the Database
	Java Is Not Always Available
	Java Does Not Fit Perfectly
	SQL and PL/SQL Are Almost Always Better Choices

	Avoid TO_DATE
	Avoid String-to-Date Conversion
	Use DATE, TIMESTAMP, and INTERVAL Literals

	Avoid CURSOR
	Avoid Custom SQL Parsing
	Avoid Automating Everything
	Avoid Cargo Cult Syntax
	Avoid Undocumented Features
	Avoid Deprecated Features
	Avoid Simplistic Explanations for Generic Errors
	Dead Processes
	Deadlocks
	Top of the Error Stack

	Avoid Unnecessarily Small Parameters
	Anti-Patterns Discussed in Other Chapters
	Summary

	Part IV: Improve SQL Performance
	Chapter 16: Understand SQL Performance with Algorithm Analysis
	Algorithm Analysis Introduction
	O(1/N) – Batching to Reduce Overhead
	O(1) – Hashing, Other Operations
	How Hashing Works
	Hash Partitioning
	Hash Clusters
	Hash Joins
	Other

	O(LOG(N)) – Index Access
	1/((1-P)+P/N) – Amdahl’s Law
	O(N) – Full Table Scans, Other Operations
	O(N*LOG(N)) – Full Table Scan vs. Index, Sorting, Joining, Global vs. Local Index, Gathering Statistics
	Full Table Scan vs. Index
	Sorting
	Joining
	Global vs. Local Index
	Gathering Optimizer Statistics

	O(N^2) – Cross Joins, Nested Loops, Other Operations
	O(N!) – Join Order
	O(∞) – The Optimizer
	Summary

	Chapter 17: Understand SQL Tuning Theories
	Managing User Expectations
	Performance Tuning State of Mind
	Performance Tuning Is Not Debugging
	Motivated Troubleshooting
	Different Approaches
	Why Not Database Tuning?

	Declarative Programming (Why Execution Plans Are Important)
	Declarative Quirks
	Execution Plans

	Operations (What Execution Plan Decisions Are Available)
	Operation Details
	Execution Plans and Recursive SQL
	Why Operations Matter
	First Operations
	Joining
	Table Access
	Index Access
	Grouping and Sorting
	Set Operators
	Optimizer Statistics
	Parallel
	Partition
	Filter
	Other

	Cardinality and Optimizer Statistics (Building Execution Plans I)
	Cardinality Is Important
	Cardinality Differences
	Cost Doesn’t Matter
	Optimizer Statistics
	Optimizer Statistics Example

	Transformations and Dynamic Optimizations (Building Execution Plans II)
	Transformations
	Adaptive Cursor Sharing and Adaptive Statistics
	Adaptive Query Plans

	Clear, Simple, and Wrong
	Summary

	Chapter 18: Improve SQL Performance
	Application Tuning – Logging and Profiling
	Logging
	Profiling – DBMS_PROFILER
	Profiling – DBMS_HPROF

	Application Tuning Through Batching
	Installation and Patch Scripts
	OLTP Applications
	Data Warehouses

	Database Tuning
	Measure Database Performance
	Automatic Workload Repository (AWR)
	Active Session History (ASH)
	Automatic Database Diagnostic Monitor (ADDM)
	Advisors
	Other Tools

	SQL Tuning – Find Slow SQL
	Get Organized
	Slow Is Based on DB Time
	Find Currently Running Slow SQL
	Find Historically Slow SQL

	SQL Tuning – Find Execution Plans
	Graphical Execution Plans Considered Harmful
	Text Is Best
	DBMS_XPLAN Functions
	DBMS_XPLAN FORMAT Parameter
	Note Section
	Other Ways to Get Execution Plans

	SQL Tuning – Find Actual Times and Cardinalities for Operations
	GATHER_PLAN_STATISTICS
	Real-Time SQL Monitor Reports (Text)
	Real-Time SQL Monitor Reports (Active)
	Degree of Parallelism
	What to Look for in Execution Plans

	SQL Tuning – Changing Execution Plans
	Changing Execution Plans
	Hints
	SQL Profile Example

	SQL Tuning – Gathering Optimizer Statistics
	Manual Statistics
	Automatic Statistics
	Other Statistics

	Summary

	Part V: Solve Anything with Oracle SQL
	Chapter 19: Solve Challenging Problems with Arcane SQL Features
	Oracle vs. the Unix Philosophy
	MODEL
	Row Pattern Matching
	Any Types
	APEX
	Oracle Text
	Other Features
	Advanced Analytics (Data Mining)
	Spatial
	OLAP
	Property Graph
	Virtual Private Database
	Database In-Memory
	Advanced Compression

	Summary

	Chapter 20: Use SQL More Often with Advanced Dynamic SQL
	Parsing
	PL/Scope
	PLSQL_LEXER
	ANTLR

	DBMS_SQL
	DBMS_XMLGEN
	PL/SQL Common Table Expressions
	Method4 Dynamic SQL
	Polymorphic Table Functions
	Method5
	Summary

	Chapter 21: Level Up Your Skills with PL/SQL
	Is PL/SQL Worth Mastering?
	The Focus Is Still on SQL
	Create a PL/SQL Playground
	PL/SQL Integration Features
	Tips for Packaging Code
	Session Data
	Transactions I – COMMIT, ROLLBACK, and SAVEPOINT
	Transactions II – Implicit Cursor Attributes
	Transactions III – Row-Level Locking
	Transactions IV – Isolation and Consistency
	Simple Variables
	Cursors
	Records
	Collections
	Functions
	Table Functions
	Pipelined Functions
	Parallel Pipelined Functions
	Autonomous Transactions for DML and DDL
	Autonomous Transactions for Logging
	Definer’s Rights vs. Invoker’s Rights
	Triggers
	Conditional Compilation
	Other PL/SQL Features

	Start Teaching and Creating
	Teach Others
	Create Open Source Projects

	Part VI: Appendices
	Appendix A: SQL Style Guide Cheat Sheet
	Appendix B: Computer Science Topics

	Index

